## SCADA-CE (SCADA para el Control de la Explotación)

### **ESPECIFICACIÓN TÉCNICA**

# PARA LA INTEGRACIÓN DE EQUIPOS Y SEÑALES EN LA PLATAFORMA DE CONTROL DE LA EXPLOTACIÓN

## SISTEMA DE CONTROL DE ALIVIOS

SCA

Consorcio de Aguas de Asturias - Servicio de Telemática VER. 20 (1.09.2016)

## Histórico de cambios de versión

| Fecha      | Versión | Autor                | Descripción                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|---------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 06-03-2015 | 8.0     | Emilio Fdez. Tamargo | <ul> <li>Incorporación del modelo NEMOS LQ en la lista de tele avisadores</li> <li>Ampliación de explicaciones sobre modo "durmiente"</li> <li>Inclusión de advertencia sobre canales matemáticos del TCR200</li> <li>Especificaciones para el montaje de sondas FTL260</li> <li>Nueva nomenclatura para Bombeos. Pasan a denominarse oficialmente EBAR (Estación de Bombeo de Aguas Residuales)</li> <li>Ampliación de normas generales: <ol> <li>Procedimientos recomendados tras el cambio de Pilas/Baterías de los equipos NEMOS.</li> <li>Inclusión de registro de señal analógica de nivel en el momento de activarse o desactivarse las señales de desborde o marcha de bombas.</li> <li>Especificación de persistencia en la generación de señales</li> <li>Normas sobre la alimentación eléctrica de la instrumentación.</li> </ol> </li> <li>Inclusión de gamas de mantenimiento para los equipos relacionados con el control de alivios bajo la categoría de "ESENCIALES"</li> </ul> |
| 10-3-2015  | 9.0     | Emilio Fdez. Tamargo | Se añade, bajo normas generales, especificaciones sobre el cableado de señales y selección de antenas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10-4-2015  | 10.0    | Emilio Fdez. Tamargo | <ul> <li>Anuncio de nuevo modelo HERMES M102 en desarrollo</li> <li>Cambio en las recomendaciones de equipos</li> <li>Ajustes en la normalización de nombres de estaciones</li> <li>Ampliación de normas generales:         <ol> <li>Persistencias máximas de señales y correspondencia entre las alarmas del mismo tipo.</li> <li>Se incluyen como norma la instalación de pluviómetros con conexión libre de potencial</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 25-1-2016  | 11.0    | Emilio Fdez. Tamargo | <ul> <li>Cambio en algunos nombre de señales</li> <li>Anuncio de nuevo modelo NEMOS N200</li> <li>Cambio en las recomendaciones de equipos y señales obligatorias</li> <li>Comentarios sobre resultado de pruebas con diversas sondas</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12-2-2016  | 12.0    | Emilio Fdez. Tamargo | <ul> <li>Se actualiza las obligaciones relacionadas con el mantenimiento de equipos y la inclusión en las gamas de mantenimiento, así como los puntos de inspección del informe mensual.</li> <li>Se incluye punto 3.5 CONTROL DE ALIVIOS EN EDAR y las correspondientes señales en la tabla de nombres/configuración por señal</li> <li>Se incluye punto 3.6 ESTACIONES METEOROLÓGICAS</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2-3-2016   | 13.0    | Emilio Fdez. Tamargo | <ul> <li>Se excluyen la opción de usar el caudalímetro origen de<br/>la señal de desborde.</li> <li>Se especifica envolvente de polipropileno para las<br/>estaciones meteorológicas.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|          |      |                                        | Reestructuración completa como especificación<br>SCADA-CE                                           |
|----------|------|----------------------------------------|-----------------------------------------------------------------------------------------------------|
| 1-9-2016 | 20.0 | Eduardo García<br>Emilio Fdez. Tamargo | Se definen las nuevas exigencias del STyCA para las<br>señales a incluir según tipo de instalación. |
|          |      |                                        | Se incluyen nuevas normas sobre el SCA en las EDAR                                                  |

### **Contenido**

| 1. | Glosario de términos                                  | . 5 |
|----|-------------------------------------------------------|-----|
| 2. | Introducción                                          | . 5 |
| 3. | Objeto de este documento                              | .7  |
| 4. | Definición y objeto del SCADA-CE (SCA) y del SCADA-EM | . 8 |
| 5. | Advertencia sobre versionado                          | .9  |
| 6. | Descripción de plataformas SCADA-CE y SCADA-EM        | 10  |
|    | 6.1. SCADA-CE                                         | 10  |
|    | 6.1.1. Arquitectura general                           | 10  |
|    | 6.1.2. Estaciones remotas                             | 10  |
|    | 6.1.3. Centro de control                              | 11  |
|    | 6.1.4. Comunicaciones                                 | 13  |
|    | 6.2. SCADA-EM                                         | 15  |
|    | 6.2.1. Estaciones remotas                             | 15  |
|    | 6.2.2. Centro de control                              | 16  |
|    | 6.2.3. Comunicaciones                                 | 16  |
| 7. | Información a transmitir                              | 18  |
|    | 7.1. Relación de variables digitales                  | 18  |
|    | 7.2. Relación de variables analógicas                 | 19  |
|    | 7.3. Otras variables                                  | 21  |
| 8. | Características de las variables y su origen          | 22  |
|    | 8.1. Digitales                                        | 22  |
|    | 8.2. Analógicas                                       | 24  |
| 9. | Variables a transmitir según tipología de estación    | 26  |
|    | 9.1. Aliviadero                                       | 26  |
|    | 9.2. Bombeo/Bombeo-Aliviadero                         | 26  |
|    | 9.3. Pluviómetros                                     | 27  |

| O.A. EDAD Finchuse actaciones materials                                                                                                                                                                                               |                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 9.4. EDAR [incluye estaciones meteorológicas]                                                                                                                                                                                         | 28                   |
| 9.4.1. Caudal de Agua Tratada                                                                                                                                                                                                         | 30                   |
| 9.4.2. Integración de señales en SCADA-E                                                                                                                                                                                              | 31                   |
| 9.4.3. Estaciones Meteorológicas                                                                                                                                                                                                      | 31                   |
| 9.5. Desbastes                                                                                                                                                                                                                        | 32                   |
| 9.6. Alarmas                                                                                                                                                                                                                          | 32                   |
| 10. Normalización de nombres y parámetros de variables y señales                                                                                                                                                                      | 34                   |
| 10.1. Sistemas y Estaciones                                                                                                                                                                                                           | 34                   |
| 10.2. Archivos de configuración                                                                                                                                                                                                       | 35                   |
| 10.3. Nombres de Señales                                                                                                                                                                                                              | 36                   |
| 10.4. Frecuencias de registro y comunicación de señales                                                                                                                                                                               | 37                   |
| 10.5. Conexionado de señales                                                                                                                                                                                                          | 40                   |
| 10.6. Texto y Condiciones para Alarmas                                                                                                                                                                                                | 41                   |
| 10.7. Coordenadas geográficas                                                                                                                                                                                                         | 42                   |
| 11. Equipamiento de campo, características mínimas y criterios de sele                                                                                                                                                                | ección 44            |
| 11.1. Equipamiento remoto de telemetría                                                                                                                                                                                               | 44                   |
| 11.2. Dispositivos remotos de telemetría para SCADA-CE                                                                                                                                                                                | 47                   |
| 11.2. Dispositivos fornotos de telementa para CO/15/1 CE                                                                                                                                                                              |                      |
| 11.2.1. MODELO M102                                                                                                                                                                                                                   |                      |
|                                                                                                                                                                                                                                       | 48                   |
| 11.2.1. MODELO M102                                                                                                                                                                                                                   | 48                   |
| 11.2.1. MODELO M102                                                                                                                                                                                                                   | 48<br>49             |
| 11.2.1. MODELO M102                                                                                                                                                                                                                   | 48<br>49<br>50       |
| 11.2.1. MODELO M102                                                                                                                                                                                                                   | 48<br>50<br>51       |
| 11.2.1. MODELO M102                                                                                                                                                                                                                   | 48<br>50<br>51<br>51 |
| 11.2.1. MODELO M102  11.2.2. MODELO NEMOS N200 - LP – LQ                                                                                                                                                                              | 48<br>50<br>51<br>51 |
| 11.2.1. MODELO M102                                                                                                                                                                                                                   | 4850515151           |
| 11.2.1. MODELO M102                                                                                                                                                                                                                   | 485051515151         |
| 11.2.1. MODELO M102  11.2.2. MODELO NEMOS N200 - LP – LQ.  11.2.3. ANTENAS:  11.2.4. MODELOS PREVIOS.  A1. HERMES M100  A2. HERMES TCR200  A3. HERMES TCR120  11.3. Dispositivos remotos de telemetría para SCADA-EM.  11.4. Antenas. | 48505151515151       |
| 11.2.1. MODELO M102                                                                                                                                                                                                                   | 48505151515151       |

| 11.7.2. Detector de desbordamiento                                                                                                         | 56  |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 11.7.3. Pluviómetro                                                                                                                        | 58  |
| 11.7.4. Medida de nivel                                                                                                                    | 58  |
| 11.7.5. Medida de caudal                                                                                                                   | 61  |
| 12. Directrices sobre montaje, instalación, configuración/programación y pue                                                               | sta |
| en marcha                                                                                                                                  | 63  |
| 12.1. Equipos y señales digitales                                                                                                          | 63  |
| 12.1.1. Pluviómetros                                                                                                                       | 63  |
| 12.2. Equipos y señales analógicas                                                                                                         | 64  |
| 12.2.1. Calibración de señales analógicas 4-20 mA                                                                                          | 64  |
| 12.3. Parámetros generales                                                                                                                 | 65  |
| 13. Obligaciones del contratista (explotador)                                                                                              | 67  |
| 13.1. TRABAJOS PREVIOS                                                                                                                     | 67  |
| 13.1.1. Coordinación con CAA previa implantación del sistema                                                                               | 67  |
| 13.2. DURANTE LA IMPLANTACIÓN                                                                                                              | 67  |
| 13.2.1. Suministro, montaje, instalación, configuración, programación y puesta en ma                                                       |     |
| 13.2.2. Contratación de servicios de comunicaciones y otras gestiones                                                                      | 67  |
| 13.2.3. Elaboración de documentación completa, estructurada y fiable                                                                       | 68  |
| 13.2.4. Formación de su personal                                                                                                           | 70  |
| 13.2.5. Coordinación con el CAA para traslado de información y programación al cent control y puesta en servicio del mismo por este último |     |
| 13.2.6. Elaboración de gamas de mantenimiento                                                                                              | 70  |
| 13.2.7. Dotación de equipos de repuesto y herramientas de programación                                                                     | 71  |
| 13.3. TRAS LA IMPLANTACIÓN                                                                                                                 | 71  |
| 13.3.1. Revisiones periódicas según plan de mantenimiento (tabla de control)                                                               | 72  |
| 13.3.2. Elaboración de informes periódicos                                                                                                 | 73  |
| 13.3.3. Inclusión de nuevas señales                                                                                                        | 75  |
| 13.3.4. Actualizaciones de programas, documentación, configuraciones y comunicaciones CAA                                                  |     |
| 13.3.5. Comunicación de incidencias y realimentación de información una vez solven                                                         |     |

| Anexo | I: Glos  | sario de Términos                                              | 78 |
|-------|----------|----------------------------------------------------------------|----|
| Anexo | II: Tab  | ola de Especificaciones. Señales, Alarmas, Frecuencias         | 83 |
| Anexo | III: Eje | emplos de configuración y calibración                          | 84 |
|       | A1.      | Calibración sonda analógica en equipos de telemetría MICROCOM: | 84 |
|       | A2.      | Calibración Pluviómetros                                       | 85 |
|       | A3.      | Configuración de los parámetros GPRS para conexión permanente  | 86 |

#### 1. Glosario de términos

Al final de este documento y como parte de la documentación complementaria, se incluye un glosario de términos ampliado con la definición de siglas, acrónimos y otros conceptos.

#### 2. Introducción

El CAA (Consorcio de Aguas de Asturias, Consorcio de Aguas o Consorcio) gestiona "SISTEMAS de abastecimiento y de saneamiento", así como las infraestructuras que se vienen en denominar como de "Servicios Generales"

En este ámbito, se entiendo por "SISTEMA" el conjunto de infraestructuras y activos interconectados que operan conjunta y coordinadamente para abastecer de agua potable o, para depurar el agua residual; a nivel municipal o supramunicipal.

El modelo de gestión empleado por el CAA para el mantenimiento, conservación y explotación de los distintos sistemas de saneamiento que le han sido encomendados, es el indirecto, mediante la contratación de empresas privadas que son especialistas en el sector.

Cada sistema de saneamiento cuenta con una EDAR (Estación Depuradora de Aguas Residuales), una red de conducciones (colectores e interceptores) y un conjunto, variable en número, de instalaciones tales como: EBARs (Estaciones de Bombeo de Agua Residual), aliviaderos, pozos de registro, galerías, etcétera.

El CAA, como gestor de la explotación y mantenimiento de las infraestructuras de saneamiento de interés general que le han sido encomendadas por el Principado de Asturias, está obligado a informar al Organismo de Cuenca, en la forma y periodicidad que establecen las normas, de

las situaciones de vertido que se producen en los aliviaderos y bombeos desplegados por los diferentes sistemas de depuración. Incluye esta prescripción el registro de información complementaria adicional, tal como la evolución de niveles en estaciones de impulsión, funcionamiento de las bombas, caudales de incorporación, etc.

Las infraestructuras encomendadas al Consorcio no cuentan a su entrega con dispositivos automáticos que detecten, registren y comuniquen a distancia dicha información. Si acaso, algunas disponen de sistemas de tele-explotación centralizados en las depuradoras con una finalidad puramente técnica de ayuda a la explotación del proceso, pero no de control de la misma desde el punto de vista del gestor responsable.

Para dar cumplimiento a los requerimientos anteriores y a la vista de las circunstancias señaladas, el Consorcio ha implantado una plataforma que permite la adquisición remota y el registro centralizado de información técnica relevante. Dicha información facilita la detección temprana de situaciones de vertido así como la supervisión de la explotación por parte del explotador y el control de la misma por el CAA.

Para implantar y mantener la plataforma se establece un reparto de funciones que será detallado en otro epígrafe de este documento. No obstante y de forma resumida; el contratista o explotador queda responsabilizado de la implantación y puesta en marcha inicial de activos en campo, así como de su explotación; mientras que el CAA gestiona y mantiene un su centro de datos (CPD) el servidor SCADA (Supervisión del Control y Adquisición de Datos) donde se recoge esta información.

#### 3. Objeto de este documento

Prácticamente en la totalidad de las EDAR gestionadas por el CAA, existe una plataforma SCADA que se comunica, mediante soportes de cable o fibra, con la red de control propia de la depuradora, y que está constituida por uno o varios PLC (Controladores Lógicos Programables, o Autómatas). En algunos casos excepcionales también se integra la comunicación y supervisión de estaciones remotas que forman parte del sistema.

Desde el CAA estos sistemas de supervisión se denominan "SCADA-E" o "SCADA de Explotación". Existe otro documento de especificaciones que regula la selección e implantación de los mismos.

El presente documento tiene como objeto establecer los criterios, normas y recomendaciones que deben regir la implementación, mantenimiento, explotación y supervisión de los equipos de telemetría que recogen los datos de control de la explotación, la instrumentación conectada a los mismos y la correcta comunicación de la información al centro de Control donde se almacenan y se sirven para consulta.

Los puntos clave que se abordan en este documento son:

- Descripción de la arquitectura de las plataformas informática y servicios involucrados.
- Enumeración y descripción de variables/señales/información a captar, registrar, transmitir, archivar y servir.
- Especificaciones sobre las señales que se deben integrar en el sistema de telemetría para cada tipo de instalación.

- Normas para la denominación de estaciones, señales, alarmas, frecuencias de registro y transmisión de datos.
- Criterios de selección de equipos de telemetría así como recomendaciones sobre instrumentación, instalación y configuración de equipos en campo
- Obligaciones del Contratista o Explotador

## 4. Definición y objeto del SCADA-CE (SCA) y del SCADA-EM

En el centro de control situado en las oficinas del CAA existen varias aplicaciones informáticas que integran una plataforma centralizada para lo que se ha dado en llamar "Sistemas Industriales de Control (SIC)". En esta plataforma se hacen disponibles los siguientes servicios:

**SCADA-CE**: Es el SCADA de Control de la Explotación o, también denominado, en el ámbito del saneamiento, SCADA de Control de Alivios (SCA). En él se recoge la información de procedente de los equipos de telemetría instalados en campo y se sirven para su consulta, vía WEB o cliente WINDOWS, a los directores de contrato del CAA, los Jefes de Planta y personal relacionado con la explotación y mantenimiento del sistema.

**SCADA-EM**: SCADA de Estaciones Meteorológicas. Comunica con las distintas estaciones meteorológicas instaladas en varias EDAR con el fin de recoger los datos meteorológicos y volcarlos en una base de datos para su consulta y procesamiento. Los datos de pluviometría principalmente, así como otras señales, vienen siendo fundamentales en la interpretación y valoración de los episodios de vertido. También aportan datos útiles en la toma de decisiones relacionadas con la gestión de la explotación.

Sitio WEB centralizado y aplicación de Tele Control: Con el objeto de facilitar el acceso y dar valor añadido a las anteriores aplicaciones informáticas se ha desarrollado un sitio WEB donde también se hace disponible una aplicación para la generación de informes periódicos con información sobre alivios y pluviometría por sistema. En el mismo sitio se centraliza, para su descarga, información de utilidad relacionada con los equipos y las plataformas informáticas.

#### 5. Advertencia sobre versionado

Está versión de documento deja sin efectos cualquier otra anterior, que solo seguirá siendo aplicable allí donde ya se hubiese incluido dentro de algún contrato vigente y siempre en el contexto del mantenimiento y explotación.

En todo caso, cualquier inversión nueva o modificación debe tomar como referencia las presentes especificaciones.

#### 6. Descripción de plataformas SCADA-CE y SCADA-EM

#### 6.1. SCADA-CE

El SCADA de Control de la Explotación se basa en la aplicación gratuita ZEUS5 WEB de la empresa MICROCOM. A continuación se hace una descripción general de la plataforma:

#### 6.1.1. Arquitectura general

La plataforma se basa en un servidor Central que gestiona la comunicación con los equipos de telemetría mediante GPRS u otros sistemas de comunicación, y los vuelca en una base de datos SQL.

La consulta de esta información puede efectuarse mediante acceso WEB, aplicación móvil (IOS o Android) o cliente instalado en entorno WINDOWS.

Entre otras funciones, el sistema permite la gestión de usuarios, la definición de diferentes vistas por estación (históricos), el diseño de sinópticos, la generación de estadísticas y alertas de comunicación, el reenvió de alarmas y creación de estaciones virtuales.

#### 6.1.2. Estaciones remotas

La infraestructura remota está constituida por los equipos, programas e instalaciones precisos para detectar, medir y acondicionar las señales de campo, así como para registrar, almacenar temporal o permanentemente, tratar localmente y transmitir la información que se haya establecido, al

centro de control (SCADA-CE) y, accesoriamente, a los terminales móviles que se definan.

Suelen contar con un cuadro eléctrico denominado ECE (Equipo de Control de Explotación), dentro de cuya envolvente se incluye el dispositivo de telemetría, junto con el restante aparellaje eléctrico (protecciones, borneros, elementos de señalización y mando, antena, fuente de alimentación, batería, cables, etc.).

A nivel de estación remota los equipos de telemetría habitualmente instalados permiten la lectura de entradas analógicas, digitales, contadores y MOD-BUS. Disponen de una memoria para más de 40.000 registros que permite registrar datos de forma autónoma y volcarlos según programación o cuando se reestablece la comunicación después de una interrupción de la misma. Esta memoria suele ser suficiente para garantizar un registro sin pérdida de datos de varios días.

Los equipos son parametrizables, haciendo su configuración muy simple. No obstante y al mismo tiempo, disponen de capacidad para cálculos y pequeña lógica que permite diversas posibilidades de programación personalizada y la generación de señales calculadas.

Como ventaja para el explotador, también disponen de gestión de alarmas de texto SMS, móvil o WEB así como llamada de voz a teléfonos de guardia y acuse de alarmas.

#### 6.1.3. Centro de control

Conjunto conformado por equipos, programas, instalaciones y servicios precisos para la recepción, registro y consulta de la información procedente de las estaciones remotas. Dicha información podrá ser recabada remotamente por los usuarios previamente definidos en el sistema.

En el CPD (Centro de Proceso de Datos) del CAA están instalados dos servidores virtualizados con ZEUS Server que centralizan las siguientes funciones:

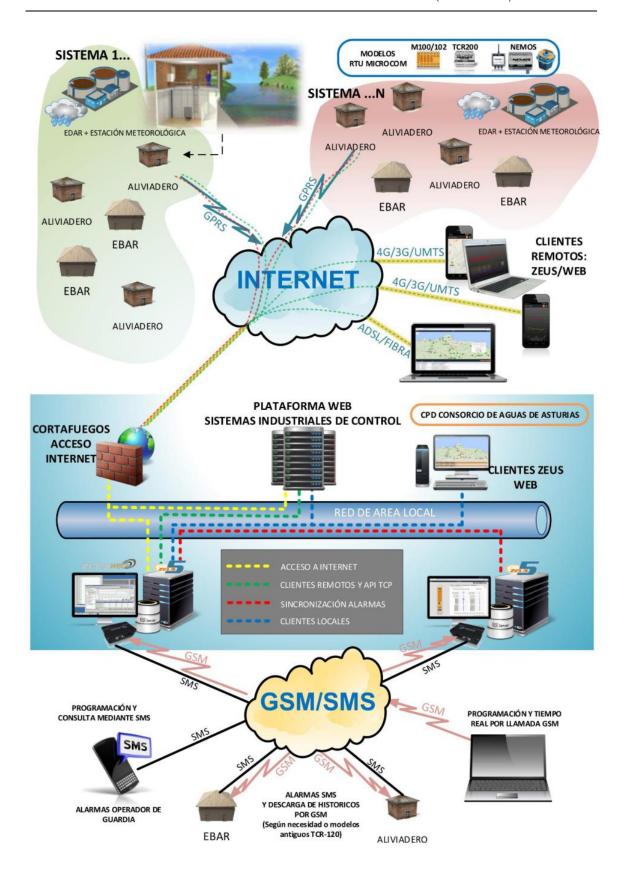
- Comunicación con los distingos equipos de telemetría
- Descarga de datos históricos y su volcado en base de datos SQL
- Envío de comandos
- Comunicación en tiempo real con las estaciones.
- Servicio WEB embebido que permite la conexión de los usuarios por este método. Los mismos puertos permiten la conexión de la aplicación cliente de Windows o móviles.

La aplicación desarrollada en el centro de control ofrece, entre otros, los siguientes **servicios mínimos**:

- Base de datos.
- Herramientas de visualización de la localización de las estaciones sobre un mapa.
- Módulo de alarmas para el seguimiento, acuse y registro de las alarmas.
- Módulo de histórico de curvas y eventos, mediante el cual se pueden representar en forma gráfica o de tabla la evolución de variables analógicas y digitales en función del tiempo.
- Acceso remoto para habilitar la consulta al sistema por el personal autorizado en virtud de los permisos asignados. Dicho personal podrá ser del CAA o de las empresas explotadoras.

Para dar servicio de informes personalizados así como centralizar el acceso y documentación del sistema existe otro servidor basado en IIS (Internet Information Server) y aplicación ASP .NET MVC.

#### 6.1.4. Comunicaciones


Comprende los equipos, programas, instalaciones, medios (físicoslógicos) y servicios necesarios para la transmisión de información de forma bidireccional entre las estaciones remotas y el centro de control, así como entre todos o parte de ellos y los usuarios.

En lo relativo a las comunicaciones los equipos de telemetría que se instalan permiten varias posibilidades según el tipo de servicio:

- Equipos remotos: Aunque el sistema permite la recepción de alarmas desde las estaciones remotas mediante SMS y la descarga de datos mediante llamada GSM, la norma es que todos los equipos se comuniquen por GPRS.
- Clientes: La conexión de los usuarios al sistema se realiza mediante internet a través de navegador WEB, aplicación móvil o de escritorio.
- Configuración: Los equipos son configurables mediante llamada
   GSM, envío de comandos SMS o conexión local por puerto USB
- Alarmas: El sistema recoge mediante GPRS o SMS las distintas alarmas de los equipos. El personal de guardia también puede disponer de configuraciones personalizadas con alarmas a móviles mediante voz y SMS.

En lo relativo a la seguridad la comunicación con los equipos remotos esta encriptada y se realiza mediante protocolo propietario de MICROCOM. La comunicación con los clientes está protegida mediante certificado SSL.

En la siguiente página se muestra un gráfico representativo de la arquitectura SCADA-CE:



Esquema general de comunicaciones del centro ZEUS5 WEB en el Centro de Datos

#### 6.2. SCADA-EM

Para determinar la criticidad de un desborde es imprescindible asociar las condiciones en que se ha producido el mismo. Una de ellas es la determinada por factores meteorológicos (lluvia). Si se ha producido en condición de tiempo seco, se tratará de un vertido y, si lo ha hecho durante un episodio de lluvia, se tratará simplemente de un alivio.

A tal efecto se instalan en las EDAR una estación meteorológica que entrega sus datos al centro de control situado en las oficinas del CAA. El software que recoge estos datos es el TELETRANS suministrado por la empresa GEONICA para sus estaciones meteorológicas.

Este sistema se complementa con los pluviómetros instalados en puntos clave del sistema de colectores, establecidos por los directores de Contrato del CAA, integrándose en el equipo de Tele Control para el control de alivios propio de la estación.

#### 6.2.1. Estaciones remotas

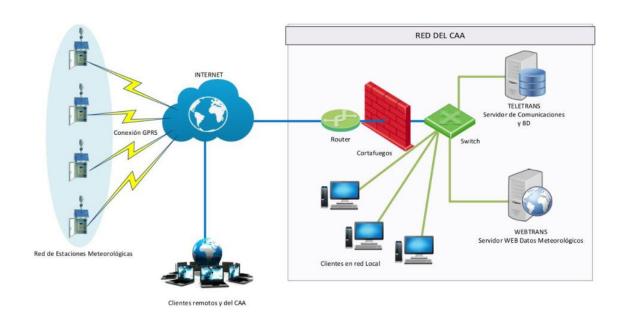
En las Depuradoras que establezca el CAA, se ha de instalar una estación meteorológica que registre los datos de diversos sensores y los hace disponibles para su descarga en el centro de control.

Hasta la fecha, todas las estaciones instaladas son del tipo METEODATA 3000C de GEONICA con instrumentación instalada en torre. Cuentan con batería y sistema de alimentación redundante (red-paneles) que les proporciona una cierta autonomía en caso de corte eléctrico, envolvente de protección y panel de visualizador con teclado.

Con el fin de integrar las alarmas de lluvia en el sistema SCADA-CE, también se instala un equipo de telemetría autónomo que recoge la señal digital de alarma de lluvia directamente de la estación meteorológica, la registra y transmite al servidor.

#### 6.2.2. Centro de control

El SCADA de Estaciones Meteorológicas que da servicio desde el centro de control del CAA consta de dos servidores con las siguientes aplicaciones principales:


- TELETRANS: Como parte de GEONICA SUITE el software TELETRANS se encarga de conectar con cada estación meteorológica a intervalos de 10 minutos, recoger sus datos e integrarlos en una base de datos SQL. Permite a su vez, la configuración remota de las estaciones.
- WEBTRANS: Servidor dedicado a servir en entorno WEB los datos almacenados en la base de datos SQL, previamente registrados por TELETRANS. Dispone de control de usuarios y permite configurar la visualización de estaciones y canales.

#### 6.2.3. Comunicaciones

Las comunicaciones entre la estación meteorológica y el centro de datos se realizan sobre internet mediante protocolo propietario de GEONICA. Las estaciones están permanentemente conectadas a internet mediante GPRS y disponen de una IP pública fija.

El Consorcio pone a disposición de los explotadores está información mediante acceso WEB a la plataforma WEBTANS en la siguiente dirección: http://webtrans.consorciaa.com

A continuación se muestra un esquema de la arquitectura de red para el SCADA-EM:



Esquema de red de estaciones meteorológicas

#### 7. Información a transmitir

En los siguientes sub-epígrafes se indican las señales procedentes de cada remota que se deben integrar en la plataforma SCADA-CE. Por diferentes motivos, no siempre será posible contemplarlas todas, por ello, en cada caso deberán analizarse las circunstancias que concurren para acorar con el CAA las que se han de seleccionar.

#### 7.1. Relación de variables digitales

- Desborde: Señal de desborde de aliviadero, arqueta, pozo o cualquier otro elemento en el que se produzca un rebosamiento.
- Marcha de Bomba: Señal de estado de bomba en funcionamiento.
- Selector de Mantenimiento: Señal de estación en mantenimiento. El Operador ha de activar/desactivar el selector antes/después de realiza un trabajo de mantenimiento preventivo o correctivo.

Esta señal permitirá descartar falsas alarmas de alivio o falsas medidas durante las labores de mantenimiento de las sondas conectadas al equipo avisador o durante el mantenimiento de cualquier otro equipamiento de la estación que pudieran comprometer la exactitud de las medidas en el equipo de tele control.

- Fallo Tensión General: Señal de fallo de tensión tomada de la entrada de alimentación eléctrica principal de la estación correspondiente.
- Fallo Tensión Telemetría: Señal de fallo de tensión en el cuadro de telemetría que detecta un corte de la alimentación a la remota.

- Pulsos Caudalímetro: Señal de pulsos totalizadores de caudal procedente del Caudalímetro.
- Pulsos Pluviómetro: Señal de pulsos procedentes del pluviómetro.
- Lluvia fuerte: Señal digital de alarma por lluvia fuerte procedente de la estación meteorológica. En los equipos que tengan un pluviómetro conectado será una señal digital calculada a partir de la alarma correspondiente.
- Acceso a la Estación: Señal digital de acceso activada bien por apertura de puerta, por sensor volumétrico u otro dispositivo detector/control de presencia.

#### 7.2. Relación de variables analógicas

Estas son las principales señales que se obtienen mediante sonda analógica:

- Nivel de Agua: Es la señal principal de una estación. Mide el nivel de agua en metros en el <u>canal principal</u>, donde siempre se instalará su correspondiente sonda.
- Nivel de Pozo de Bombas: Esta señal de nivel en metros se integra cuando existan bombas de impulsión y la señal principal de "Nivel de Agua" no refleje fielmente el mismo en el pozo de bombas, bien porque este situada en compartimentos independientes o porque algún elemento como muros, rejas o compuertas puedan producir variaciones de nivel.
- Posición de Compuerta: Si existe alguna compuerta cuyo nivel de apertura pueda afectar al nivel de agua en el canal de alivio o al nivel

en el pozo de bombas debe integrarse como una señal de posición 0-100% en el sistema de telemetría.

- Caudal instantáneo: Cualquier señal de caudal que se integre en el sistema debe registrar sin excepción la señal de caudal instantáneo como señal analógica.
- Presión: Medida de presión en continuo en puntos según conveniencia.
- **Sulfhídrico**: Medida en continuo de la concentración de sulfuro de hidrógeno en el aire en ciertos puntos de la instalación.
- Conductividad: Medida de la capacidad del agua a dejar pasar libremente la electricidad. La conductividad electrolítica en medios líquidos está relacionada con la presencia de sales en solución.

Además de las señales analógicas obtenidas mediante sonda, existen las que pueden ser **calculadas** a partir de otras analógicas, por integración de pulsos digitales o de variables internas del equipo, como:

- Caudal medio: Caudal medio según base de tiempo calculado a partir de la integración de pulsos digitales de caudal (caudalímetro).
- Volumen: Señal totalizadora de volumen en m³ según base de tiempo prefijada.
- Lluvia Acumulada: Total acumulado expresado en l/m² procedente de la integración de pulsos de un pluviómetro. Se usa la misma base de tiempo que en las estaciones meteorológicas.

- Intensidad de Lluvia Máxima: Intensidad máxima minutar expresado en I/m² procedente de la integración de pulsos de un pluviómetro. Se usa la misma base de tiempo para su registro que en las estaciones meteorológicas.
- Señal GSM: Señal de intensidad de la cobertura GSM. Se expresa en RSSI y/o dBm.
- Voltaje: Tensión, expresada en V, de la batería o fuente de alimentación del equipo y tomada de variable interna del propio equipo.

#### 7.3. Otras variables

Según convengan a cada instalación, el CAA puede exigir la integración, en el sistema SCADA-CE, cualquiera de las señales descritas en los apartados anteriores así como otras cualesquiera adicionales que considere oportunas.

Aunque no forman parte de las señales exigidas por el CAA, a continuación se listan algunas señales que la mayoría de explotadores considera útil incorporar al sistema para su consulta y generación de alarmas:

- Fallo de bomba: Señal de fallo genérico de una bomba. Puede reflejar un fallo por disparó de relé térmico, sobrecarga, falta de fase con bomba parada, pozo seco, giro inverso, etc.
- Intervención INMEDIATA: Con el fin de no generar demasiadas alarmas al personal de guardia, en muchas instalaciones se centralizan varios fallos críticos en una sola alarma de "Intervención inmediata". El personal al recibirla, interpreta que la intervención es urgente.

 Intervención NO Inmediata: La alarma anterior de "Intervención Inmediata" se complementa con la de "Intervención NO Inmediata", centralizando en esta aquellos fallos que, si bien no son urgentes, precisan de una atención por parte del personal de mantenimiento.

ADVERTENCIA: Cualquier señal adicional que el explotador considere oportuno incorporar al sistema de telemetría debe ser consensuada previamente con el Responsable de Contrato correspondiente.

### 8. Características de las variables y su origen

Las señales de entrada al equipo de Telemetría podrán ser analógicas o digitales. No se contempla, a no ser en casos muy justificados y aprobados previamente por el CAA, la comunicación directa con otros dispositivos programables (PLCs, RTUs, equipos de instrumentación o regulación, etc.) a través de puertos de comunicación de datos serie (buses) o directamente por sus salidas analógicas o digitales.

A continuación se detallan con más precisión algunas características clave de las señales a incorporar:

#### 8.1. Digitales

Señales de Desborde: Permiten la verificación de la señal de nivel a la que siempre van asociadas y la comprobación de su calibración. <u>Deben reflejar fielmente el punto de inicio de vertido con una precisión de 1 cm o mejor</u>. Se conectarán como <u>contacto normalmente cerrado (NC)</u> y no

deben existir elementos intermedios, como relés, entre la sonda y el dispositivo de telemetría.

NO SE EMPLEARÁN PARA ESTE FIN DETECTORES DE INSUFICIENTE PRECISIÓN COMO LOS INTERRUPTORES DE NIVEL POR BOYA.

- Señal de Fallo Tensión: La señal de fallo de tensión general se obtendrá directamente del cuadro general en la entrada de la acometida eléctrica de la estación mediante relé de control libre de potencial de red trifásica (o relé de supervisión monofásica en caso de acometidas monofásicas). Los relés deben permitir el ajuste de la histéresis y retardo de disparo. Su conexión será según lógica negativa, es decir, mediante contacto normalmente cerrado (NC).
- La señal de fallo de tensión de telemetría debe tomarse directamente de la fuente de alimentación del equipo, si dispone de salida digital de alarma por este motivo o, en su defecto, de un relé libre de potencial instalado, a tal efecto, en el cuadro de telemetría.
- Acceso a la estación: En muchos casos ya existe la señal de acceso a la estación procedente de un final de carrera en la puerta de acceso, volumétricos o una central de alarma. En los casos que estime oportuno, el CAA puede pedir la inclusión de esta señal en el sistema de telemetría.
- Selector de Mantenimiento: Señal digital que se activa por conmutador con llave situado en el propio cuadro de telemetría. Dicho conmutador será de dos posiciones y la llave solo podrá extraerse en la posición cero inicial.
- Señal digital de Lluvia Fuerte: Siempre que se registre un acumulado de lluvia superior a <u>0,2 l/m²</u> en un periodo de <u>10 minutos</u> se debe generar una señal de alarma de "Lluvia Fuerte". Esta señal procederá de una

salida digital de la estación meteorológica o, si se trata de un pluviómetro conectado al equipo de telemetría, de una alarma en el canal matemático asociado al acumulado cada 10 minutos del pluviómetro.

#### 8.2. Analógicas

La lectura de sondas analógicas siempre se realizará mediante señal de corriente normalizada de 4-20 mA. Cuando la lectura de la misma este compartida con otros dispositivos, como un PLC, se instalará además el correspondiente duplicador de lazo con aislamiento galvánico.

La lectura de cualquier sonda analógica por otros métodos que no sean por bucle 4-20 mA debe consensuarse previamente con el CAA, excepto las que expresa y excepcionalmente se especifiquen por el mismo en estas especificaciones generales u otras particulares.

En las señales 4-20 mA, los 4 mA corresponderán a 0 y los 20 mA al final de escala.

Las señales analógicas se registrarán con una determinada frecuencia preestablecida. Además también se registrarán siempre que la señal varíe un porcentaje determinado desde el último registro. Las frecuencias y porcentajes para el registro y comunicación en cada caso serán especificadas por el Consorcio de Aguas.

 Señales de Nivel: Se expresan en metros. Se instalarán sondas con una precisión de 1 cm o mejor. Esta variable lleva asociado una <u>cota</u> <u>de alivio que sirve de base para la correspondiente alarma</u> y deberá calibrarse según las especificaciones del apartado 12.2.1. Se distinguirá, para la frecuencia de registro y comunicación de los datos, la situación de la estación remota en función de dos estados: **Aliviando** y situación **Normal**.

- Señal de Caudal: A no ser que se indique lo contrario (como en el caso de las caudales en las EDAR) toda señal de caudal debe incorporar 3 medidas:
  - o Caudal instantáneo: Procedente de señal 4-20 mA
  - Caudal medio: Por integración de la media de pulsos según base de tiempo (generalmente 1 hora)
  - Volumen: Por integración de la diferencia del totalizador de volumen según base de tiempo (generalmente 1 hora).

Los <u>caudales</u> deben expresarse siempre en <u>I/s</u> y los <u>volúmenes</u> en  $\underline{m^3}$ .

Cuando exista un **visualizador** de caudal en la instalación deberá configurarse para que la medida se exprese **exactamente igual** que la registrada en el sistema de telemetría (l/s).

 Posición de Compuerta: Se registrará la posición en un rango desde 0% en 0 mA, correspondiente a compuerta cerrada, y el 100% en 20 mA, para la compuerta totalmente abierta.

### 9. Variables a transmitir según tipología de estación

#### 9.1. Aliviadero

En cualquier instalación con posibilidad de vertido a cauce debe registrarse en los equipos de telemetría y trasmitirse al SCDADA-CE las siguientes variables:

- Nivel de Agua (analógica)
- Evento de desborde (digital)
- Posición de compuerta -de existir y tener repercusión hidráulica o de regulación de caudales- (analógica)
- Mantenimiento (digital)
- Fallo de Tensión General (digital)
- Fallo de Tensión Telemetría (digital)

#### 9.2. Bombeo/Bombeo-Aliviadero

En los casos de las estaciones que incorporen bombas para la incorporación de caudal al colector, además de las especificadas para un aliviadero, las siguientes señales:

 Nivel de Pozo de Bombas -si no es exacto al Nivel de Agua-(analógica)

- Evento de desborde Pozo de Bombas -si no coincide exactamente con la de Desborde de Nivel de Agua- (digital)
- Posición de compuerta -de existir y tener repercusión en la regulación de caudales- (analógica)
- Marcha de Bomba, por cada bomba existente, (digital)

#### 9.3. Pluviómetros

Siempre que se instale un pluviómetro directamente al equipo de telemetría de una estación se transmitirán las siguientes variables:

- Lluvia acumulada por cada periodo de 10 minutos expresada en l/m²
- Lluvia acumulada por cada periodo de 1 hora expresada en l/m²
- Intensidad máxima minutar de cada 10 minutos

#### 9.4. EDAR [incluye estaciones meteorológicas]

En la EDAR el SCADA-CE debe contemplar al menos los siguientes puntos de control y señales principales:

- Caudal instantáneo en Entrada de Agua Bruta en planta (analógica)
- Caudal instantáneo en Salida de Agua Tratada (MODBUS)
- Volumen por hora en Salida de Agua tratada (MODBUS)
- Señal Desborde, Nivel y Caudal instantáneo en Bypass General de planta en Pozo de Gruesos (digital, analógica y analógica)
- Señal Desborde y Nivel en pozo de bombas (digital y analógica) en Bombeo de Cabecera (si no coincide con el desborde y nivel en Bypass General de planta)
- Marcha de Bomba por cada bomba en Bombeo de Cabecera (digitales)
- Señal Desborde, Nivel y Caudal (digital, analógica y analógica) para cada punto de vertido a BY-PAS entre pretratamiento y la entrada a tratamiento en reactor biológico.
- Caudal instantáneo procedente del caudalímetro de entrada a
   Biológico -de no existir se instalará caudalímetro- (analógica)
- Fallo de Tensión General de planta (digital)
- Fallo de Tensión Telemetría (digital)

- Mantenimiento (digital)
- Señal digital de Funcionamiento del equipo de desinfección (digital)
- Señal digital de Fallo unificado de lámparas UV (digital). Se unificará en esta señal cualquier fallo individual de lámparas del equipo (desinfección)
- Señal analógica de **intensidad UV** (desinfección)

En todo caso, **siempre** se integrará en el SCADA-CE las señales de **Desborde**, **Nivel** y **Caudal Instantáneo** para **cualquier punto con posibilidad** de desborde hacia un canal de bypass u otra vía de **vertido al dominio público (DP)** 

Si no existe caudalímetro instalado en los puntos donde se deba integrar señal de caudal se intentará instalar un caudalímetro de sección completa entre bridas. Sólo en caso de presentarse una complejidad técnica importante se podrá optar por otra técnica de medida de caudal, que deberá consensuarse con el CAA y que, en todo caso, arroje una precisión de medida equivalente si es posible (si lectura por lámina de agua, precisión de nivel de 0,5 cm o mejor).

Cuando se instalen caudalímetros para el cálculo de caudal sobre lámina de vertido, se fijará la correspondiente lámina niveladora en el labio de vertido (acero inox. 316 o galvanizada en caliente) y, en general, se realizarán las obras necesarias para la correcta medida de caudal y nivel.

Las señales digitales de desborde no se tomarán del mismo caudalímetro que controlan. Tendrán una sonda digital independiente para la detección del desborde.

Como en el resto de casos las señales deberán consensuarse previamente con el CAA pues este podría exigir la inclusión de otras señales o modificación de las especificadas.

A continuación se recogen los casos particulares se tendrán en cuenta a la hora de integrar las EDAR en el SCADA-CE:

#### 9.4.1. Caudal de Agua Tratada

La exactitud en la medida del Caudal y Volumen de Agua Tratada en una EDAR adquiere mayor relevancia por el hecho de que esos datos tienen relación directa con la participación de resultados del contrato gestionado.

Por ello, se debe asegurar la medida exacta del caudal de agua tratada en planta. De ser necesario se sustituirá el caudalímetro existente por uno certificado para facturación. Los datos de caudal instantáneo y totalizador de volumen deben registrarse directamente en el equipo de telemetría mediante bus de comunicaciones (por ejemplo MODBUS) y comunicación directa entre el caudalímetro y el propio equipo de telemetría.

Las medidas en el **equipo de telemetría** serán las siguientes:

- Señal analógica MODBUS de Caudal instantáneo en l/s y registrada cada 10 minutos así como por una variación de un 5%
- Señal analógica MODUBUS de totalizador de pulsos en caudalímetro.

#### 9.4.2. Integración de señales en SCADA-E

Todas las señales integradas en el SCADA-CE para la EDAR deben adquirirse y registrarse de igual forma y periodicidad en el SCADA de Explotación (SCADA-E) permitiendo su consulta histórica a petición del CAA.

Adicionalmente también se integrarán las siguientes en el SCADA-E:

Valor de volumen por hora y día procedente de totalizador de caudalímetro por cada caudal instantáneo que se incorpore al sistema SCADA-CE.

#### 9.4.3. Estaciones Meteorológicas

La estación meteorológica que se instale en la EDAR debe ser totalmente compatible con el sistema de recogida de datos TELETRANS. Se instalará con alimentación eléctrica de 220V propia de la planta con línea y elementos de protección independientes. Dispondrá de batería con respaldo mínimo de 24 horas ante cortes de tensión. La estación se completará con alimentación autónoma mediante paneles solares como sistema de respaldo.

Las señales que se instalarán serán, como mínimo, las siguientes:

- Pluviometría (Máxima minutar, Acumulado 10 min., Alarma Iluvia fuerte [>0,2 l/m²])
- Viento (Dirección, Intensidad máxima y media)
- Humedad Relativa (Instantánea, máxima, media, mínima)
- Presión atmosférica (Instantánea, máxima, media y mínima)

- Presión atmosférica QNH media (A nivel de mar)
- Radiación solar
- Nivel de batería (Voltaje)

Para la envolvente de la estación se escogerá <u>caja de polipropileno</u> y no el armario metálico, por el riesgo de oxidación que presenta en entornos agresivos.

La estación contará con panel de visualización y teclado dentro de la envolvente.

El sistema dispondrá de un equipo de telemetría para asociar su señal de alarma digital de lluvia con el sistema de control de alivios. Esta alarma se cableará mediante salida digital de la estación y entrada correspondiente en el equipo de telemetría.

#### 9.5. Desbastes

En los desbastes se integrará en el SCADA-CE, al menos, la siguiente información:

Señal digital de Desborde

#### 9.6. Alarmas

El SCADA-CE, además de un registro histórico con el valor registrado de las variables que se integran, dispone de un registro independiente de Alarmas y Eventos.

El *Anexo II* recoge en tabla las alarmas asociadas a cada señal.

#### NOTA.-

El nombre que reciben las señales en el equipo de telemetría así como el orden de las mismas, deberá ser consensuado con el Servicio de Telemática del CAA antes de proceder a la configuración y puesta en marcha de los equipos, con el fin de que exista la mayor homogeneidad con los restantes sistemas integrados en el Centro de Control de Oviedo

No obstante y ya que cada sistema de saneamiento está sujeto a circunstancias técnicas, económicas, temporales y organizativas diferentes, en cada caso se deberá acordar con el Servicio de Tratamiento y Calidad de Agua (STyCA) las señales que para cada instalación y/o sistema se desean implementar. El CAA también puede exigir la instalación de cualquier otra señal que considere oportuna para la supervisión del servicio.

ESPECIFICACIÓN TÉCNICA PARA LA INTEGRACIÓN DE EQUIPOS Y SEÑALES EN LA PLATAFORMA DE CONTROL DE LA EXPLOTACIÓN (SCADA-CE)

10. Normalización de nombres y parámetros de variables y señales

El CAA ha normalizado los nombres de los diferentes sistemas y estaciones con

el fin de homogenizar y facilitar su identificación en las diferentes plataformas e

informes en los que se reflejan.

Entre otros documentos disponibles para su consulta se encuentran los "Planos

Directores", donde se representa sobre mapa la ubicación de cada instalación,

su número dentro del sistema y nombre oficial. Estos servirán de guía en la

aplicación de la normalización que se expone a continuación.

Al configurar un equipo de telemetría y asignar nombres a la estación, señales,

alarmas y archivos de configuración se debe seguir las siguientes

recomendaciones siempre que sea posible:

10.1. Sistemas y Estaciones

Todos los sistemas llevan asociado un nombre, un número identificativo de 3

dígitos y un código corto de caracteres alfabéticos. De igual forma, toda

estación está identificada mediante un código de 3 dígitos y un nombre oficial.

Al dar de alta una estación nueva en el sistema de telemetría o modificar el

nombre de una existente se seguirá el siguiente esquema:

XXX EYY Tipo ZZZ [PL WW]

Siendo:

XXX: Abreviatura del sistema en 3 letras mayúsculas (Consultar con CAA)

YY: Número de la estación en dos cifras, según plano director.

Tipo: Tipo de Estación:

- Aliviadero
- EBAR
- EDAR
- Meteo (En caso de alarmas de lluvia fuerte para estación Meteorológica)
- Galería
- Estación desbaste
- ...

ZZZ: Nombre de la Estación según el plano director,

WW: Número del pluviómetro, si existe, según numeración consensuada con el CAA.

Nota: [PL WW] no se incluirá si no existe un pluviómetro instalado en la estación.

## Ejemplo:



<sup>\*</sup> Aliviadero, EBAR, EDAR, Meteo, Galería, Estación desbaste ...

Nota: El nombre de la estación en los equipos de telemetría MICROCOM no debe superar los 50 caracteres de longitud.

## 10.2. Archivos de configuración

Al guardar la configuración del equipo de telemetría se nombrará el archivo con *el mismo nombre exacto que el nombre de la estación* terminado con la extensión de archivo correspondiente. Así, en el ejemplo del apartado anterior, el archivo de configuración se nombraría como:

BJN E20 EBAR Cornellana [PL 02] .hcf

Extensión del archivo de configuración

## 10.3. Nombres de Señales

El nombre de cada señal a integrar en el sistema así como los textos de alarma que puede generar, está definido en la tabla que se adjunta como Anexo II.

Existen particularidades de cada instalación e incluso de la instrumentación que se reflejarán como modificadores añadidos a los nombres de señal. Por ejemplo:

- Señales con origen en Sonda analógica: Se añadirá inmediatamente después del nombre de la señal un identificativo de la tecnología usada:
  - (SU) En caso de utilizar tecnología Ultrasónica
  - (SH) En caso de ser una sonda Hidrostática
  - (SR) Tecnología Radar
  - (SC) Tecnología Capacitiva
  - (SI) Tecnología Inductiva
  - (SRS) Tecnología Resistiva
  - (SV) Detección por paletas Vibratorias
  - (SF) Por Flotador
  - (SE) Para los caudalímetros Electromagnéticos
  - (ST) Caudalímetro por Turbina
  - ...
- Cuando existan varias señales correspondientes al mismo tipo de señal se agregará, justo después de nombre de la misma, un espacio y el número correspondiente a su orden.

Por ejemplo: Supongamos que en un aliviadero existen dos señales "NIVEL AGUA", por tener dos puntos de alivio en la misma instalación, y una sonda es hidrostática mientras que la otra es ultrasónica. En este caso las señales se nombrarían como "NIVEL AGUA 1 (SH)" y "NIVEL AGUA 2 (SU)"

- Cuando, por proximidad o compartir cuadro eléctrico, en un mismo equipo de telemetría se integren señales de estaciones diferentes, se identificará la procedencia de las señales ajenas a la estación principal con el añadido de un modificador al final de su nombre. Siguiendo el siguiente esquema:
  - #YY Donde YY es el número de estación origen de la señal según plano director expresado en dos dígitos.

## 10.4. Frecuencias de registro y comunicación de señales

Como norma general se respetarán las siguientes frecuencias de *registro de* señales:

- Nivel Agua, Nivel en Pozo de Bombas y Caudales Instantáneos: Se distinguirán dos situaciones de la estación, Aliviando y Normal. Si la estación está <u>ALIVIANDO</u> (vertido a DP), el registro de estas señales será <u>cada minuto</u>. Si, por el contrario, la estación está en situación <u>NORMAL</u> el registro se registrarán cada <u>10 minutos</u>. Este grupo de señales también se registrarán con los siguientes eventos:
  - Cada <u>arranque y parada</u> de cualquier <u>bomba</u> integrada en el sistema de telemetría
  - <u>Activación/ desactivación</u> de <u>señal digital de desborde</u>.
  - Activación/desactivación de alarma de alivio.

- Resto de Señales Analógicas Físicas (Posición de compuerta, Sulfhídrico, etc.): Se registrarán <u>cada hora</u> independientemente del estado de la estación.
- Señales calculadas de Caudal y Volumen: Se registrarán según la <u>base de tiempo</u> utilizada para su cálculo. Así los caudales medios, con una base de tiempo de 600s, se registrarán cada 10 minutos y los volúmenes por hora se registrarán cada 3600s.
- Señales Digitales: Todas las señales digitales se registrarán al <u>cambio</u> de valor de las mismas (flanco de subida y el de bajada) y también <u>cada hora</u>, excepto la señal de "Lluvia Fuerte" de las estaciones meteorológicas cuyo valor se registrará al cambio y cada 21600 segundos.
- Registro por % de variación en señal: Todas las señales analógicas físicas conectadas al equipo de telemetría se registrarán, independientemente de su frecuencia cíclica de registro, cada vez que experimenten una <u>variación</u> de valor, desde el último registro, de un 10% o <u>5%</u> con respecto a su máximo habitual. Estos valores son valores de partida que se tendrán que ajustar, en cada caso, a las peculiaridades de cada estación y señal.

La <u>trasmisión</u> de la información al centro de datos se realizará según tres posibilidades:

- Estación en estado de "ALIVIO": Se transmitirá los datos <u>cada</u> minuto.
- Estación electrificada en estado "NORMAL": La transmisión será cada hora.

Estaciones cuyo equipo de telemetría funcione con baterías y se encuentre en estado "NORMAL": La transmisión se realizará <u>cada 6</u> <u>horas</u>, el equipo estará en modo "durmiente" y se abrirá una <u>ventana</u> <u>de 10 minutos de activación GSM, a las 8:15 am</u>, para permitir su configuración remota.

## 10.5. Conexionado de señales

Como norma general las señales clave se deben conectar, de ser posible, en la misma entrada y tal como pasamos a especificar:

| SEÑAL       |                          | SERIE EQUIPOS TELEMETRÍA<br>MICROCOM |            |      |       |
|-------------|--------------------------|--------------------------------------|------------|------|-------|
|             |                          | TCR200                               | M100       | M102 | NEMOS |
| ANALÓGICAS  | NIVEL AGUA (Principal)   | Α0                                   | A0         | Α0   | Α0    |
|             | NIVEL POZO BOMBEO        | A>                                   | A>         | A>   |       |
|             | QI INCORPORA             | A>                                   | A>         | A>   | A1    |
|             | POSICIÓN COMPUERTA       | A>                                   | A>         | A>   | A>    |
|             | SULFHRÍDICO              | A/E>                                 | A/E>       | A/E> | A>    |
|             | PRESIÓN                  | A/E>                                 | A/E>       | A/E> | A>    |
|             | CONDUCTIVIDAD            | A/E>                                 | A/E>       | A/E> | A>    |
| DIGITALES   | DESBORDE ALIVIADERO      | D0                                   | D0         | D0   | D0    |
|             | MARCHA BOMBA 1           | D1                                   | E1         | D1   |       |
|             | MARCHA BOMBA 2           | D2                                   | E2         | D2   |       |
|             | MARCHA BOMBA 3           | D3                                   | E3         | D3   |       |
|             | MARCHA BOMBA 4           | D4                                   | E4         | D4   |       |
|             | MARCHA BOMBA 5           | D5                                   | E5         | D5   |       |
|             | MANTENIMIENTO            | D6                                   | <b>E</b> 6 | D6   | D1    |
|             | FALLO TENSION GENERAL    | D7                                   | D1         | D7   | D2    |
|             | FALLO TENSION TELEMETRÍA | D>                                   | E>         | D/E> | D3    |
|             | DETECCIÓN DE ACCESO      | D>                                   | E>         | D/E> | D>    |
| MATEMATICAS | LLUVIA x 10m             | МО                                   | МО         | МО   | МО    |
|             | QM INCORPORA             | M1                                   | M1         | M1   | M1    |
|             | VOL INCORPORA            | M>                                   | M>         | M>   | M>    |
| MATE        | LLUVIA X 1h              | М3                                   | М3         | М3   | М3    |
|             | LLUVIA MAX x 10min       | M>                                   | M>         | M>   | M>    |

#### Recuerde:

Las señales digitales que generen alarmas claves, como Fallo de Tensión o Desborde, deben conectarse con lógica negativa. Es decir, con conexión normalmente cerrada.

De esta forma nos aseguraremos de que se genere una alarma ante un fallo de suministro eléctrico a la señal o corte del cableado y así detectar y reaccionar ante esos fallos

| LEYENDA |                                    |  |  |  |
|---------|------------------------------------|--|--|--|
| SIM.    | SIGNIFICADO                        |  |  |  |
| An      | Entrada Analógica n                |  |  |  |
| Dn      | Entrada Digital n                  |  |  |  |
| En      | Extensión n                        |  |  |  |
| Mn      | Canal Matemático n                 |  |  |  |
| >       | Siguiente entrada libre según tipo |  |  |  |
| QI      | Caudal Instantáneo                 |  |  |  |
| QM      | Caudal Medio                       |  |  |  |
| VOL     | Volumen                            |  |  |  |

## 10.6. Texto y Condiciones para Alarmas

Aunque en la tabla del *Anexo II* se incluye especificación sobre las condiciones de generación de alarmas para cada señal y su texto, a continuación se exponen con más detalle algunas **particularidades** sobre el disparo de las principales alarmas del sistema:

- "ALIVIANDO": Se generará esta alarma con este texto cuando:
  - Se alcance la cota de alivio en el Nivel de Agua de la estación.
  - Se active el sensor digital de desborde asociado al canal de alivio. En este caso se añadirá el texto "(DIGITAL)" detrás de "ALIVIANDO"

Cada alarma generará también un <u>mensaje con su desactivación</u>. En el caso de la señal analógica se respetará en su desactivación una histéresis apropiada a las particularidades de cada instalación.

La *persistencia* de la señal, tanto analógica como digital, para disparar la alarma será de 1 segundo (en el caso de sondas hidrostáticas) o de 5s en el caso de sondas ultrasónicas. En todo caso las persistencias para el disparo de alarma de las dos señales (analógica y digital) deben ser las mismas y se fijará según la de mayor valor.

Cuando se dispare está alarma se debe cambiar el **estado de la estación** a "<u>ALIVIANDO</u>". El paso a situación "<u>NORMAL</u>" de la estación se producirá cuando se desactiven las dos condiciones (digital y analógica).

"Lluvia Fuerte": Se genera una alarma de "Lluvia fuerte" cuando se superan los 0,2 l/m2 de precipitación en un periodo de 10 minutos. La señal puede generarse en una estación meteorológica y transmitirse al SCADA-CE mediante un equipo de telemetría. También puede originarse directamente desde el canal matemático para el acumulado de 10 minutos si procede de un pluviómetro instalado en una estación.

- Persistencia de condición en la señal para la generación de otras alarmas: Como norma general todas las alarmas se activarán y desactivarán con una persistencia de 1 segundo.
- Transmisión al SCADA-CE: Las alarmas y su desactivación se transmitirán inmediatamente al centro de control. Esto no significa que, si el explotador ha decidido recibir las alarmas por SMS en sus móviles de guardia, tenga que recibirlas obligatoriamente en las mismas condiciones y persistencia. El sistema es suficientemente flexible para que el explotador pueda configurar sus alarmas de texto (SMS) de forma independiente a las trasmitidas por GPRS con unas condiciones totalmente diferentes.

## 10.7. Coordenadas geográficas

Los equipos de telemetría que se suelen instalar permiten la configuración de la posición geográfica del propio equipo. Este dato debe incluirse en la configuración siempre para su correcta visualización en el mapa general de

la aplicación. Las coordenadas se especifican en formato decimal



Como ayuda a la georreferenciación de las estaciones se ha incluido en la plataforma de sistemas industriales de control un asistente al que se puede acceder desde el siguiente enlace: <a href="https://sic.consorcioaa.com/Geo">https://sic.consorcioaa.com/Geo</a>

Desde un móvil con GPS nos indica la posición donde nos encontramos y también podemos seleccionar una pulsando con el ratón en el mapa de google.

Las coordenadas ya estarán en formato decimal, el que necesitamos para su correcta configuración

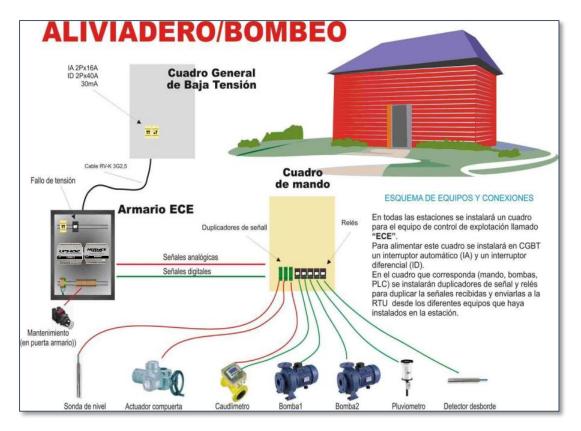


## 11. Equipamiento de campo, características mínimas y criterios de selección

Como norma general, se intentará el aprovechamiento de la instrumentación de campo existente, instalando los dispositivos necesarios para adaptar la señal disponible a los tipos de señal física admitidos por los equipos de Telemetría y siempre y cuando no se comprometa la calidad y disponibilidad de la señal.

En caso de plantearse la implantación de nuevo equipamiento, se seguirán las siguientes recomendaciones y directrices:

## 11.1. Equipamiento remoto de telemetría


El equipo de telemetría se instalará en un cuadro eléctrico independiente (que denominaremos ECE [Equipo de Control de Explotación]) o en su defecto en un cuadro ya disponible en el que se disponga de suficiente espacio. Dentro de la envolvente escogida se incluirá el equipo de telemetría, junto con el restante aparellaje eléctrico (protecciones, borneros, elementos de señalización y mando, antena, fuente de alimentación, batería, cables, etc.).

Se considera ventajoso el disponer de un cuadro independiente (ECE) para el equipamiento de telemetría pues permite independizar su mantenimiento del resto de cuadros y evita posibles interferencias indeseadas al operar otra instrumentación no relacionada con el SCADA-CE.

En cada instalación han de cablearse <u>las señales que se hayan</u> acordado con el Servicio de Tratamiento y Calidad de Agua (STyCA), unas procedentes de los cuadros ya existentes y otras, de unidades de medida y/o detección instaladas al efecto, así como de otros dispositivos que se exijan.

El sistema remoto de telemetría deberá desempeñar las siguientes funciones mínimas:

- Adquirir, registrar y tratar localmente las señales físicas recibidas.
- Comunicar al centro de control (a través del medio de comunicación establecido, cuando se produzcan y a iniciativa propia) las alarmas que se generen.
- Comunicar igualmente dicha información al personal asignado de guardia o mantenimiento, mediante mensajes cortos SMS, previa llamada GSM que asegure su recepción.
- Volcar de forma periódica y sobre el centro de control, la información registrada localmente que se requiera.
- Responder a las peticiones formuladas desde el centro de control para el volcado de datos actuales y/o históricos.
- Responder a los usuarios autorizados, mediante mensajes SMS, a las peticiones formuladas por los mismos a través de esta misma tecnología mediante terminales telefónicos móviles.
- Permitir la conexión bidireccional (GSM) entre el equipo de telecontrol y un puesto remoto autorizado y con software adecuado, para la configuración, programación y supervisión en línea del primero.
- Ser capaz de continuar registrando las principales señales de la estación y alarmas después de un corte eléctrico. Para ello se instalará el sistema de baterías que le permita una autonomía mínima de 10 horas.



Esquema básico de conexiones de una estación.



Fotografía interior cuadro con TCR200

Fotografía interior cuadro con M100

## 11.2. Dispositivos remotos de telemetría para SCADA-CE

Antes de la adquisición e implantación de sistemas de telemetría para el control de alivios y de la explotación y, una vez definido el alcance (número instalaciones, señales a transmitir, tipo de tele-avisador, etc.), se consultará con el Servicio de Telemática de este Consorcio para acordar los criterios de selección de equipos y materiales, instalación de los mismos, puesta en marcha, memoria de funcionamiento, pruebas finales y documentación a entregar al término de la obra. Éstos deberán adaptarse a condicionantes puntuales derivados de la posible existencia previa de otros elementos similares, instrumentación disponible, dificultades de captura de señales, etcétera.

El explotador podrá optar por seleccionar los equipos de Telemetría que considere más oportunos; sin embargo se advierte que, por motivos de exclusividad técnica y al no contar con el protocolo de comunicación ni con los algoritmos de encriptación/compresión de datos, los dispositivos que mejor se integran con la plataforma existente son los propios del fabricante MICROCOM. Recuérdese que se trata de componentes de bajo coste donde el SCADA y clientes de acceso resultan totalmente gratuitos.

En caso de optar por dicho fabricante y a la fecha de redacción de este documento, existe la posibilidad de emplear alguno de los siguientes modelos:

- Modelo M102
- Modelo Nemos LP / LQ / N200

A continuación se indican los criterios de selección de cada uno de ellos:

#### 11.2.1. MODELO M102

Se trata de un equipo modular, ampliable, que puede llegar a ofrecer monitorizar hasta un total de 96 entradas/salidas.

El módulo maestro M102 o CPU, cuenta con 8 entradas digitales, 4 entradas analógicas 4/20mA, 1 salida digital, entrada para sondas de temperatura y humedad así como interfaz MODBUS RTU 485 pudiendo actuar como maestro o esclavo. Dispone de 512 Kb de memoria con una profundidad de hasta 40000 registros.

Estos son los posibles módulos de expansión:

| Modelo      | Descripción                                                      |
|-------------|------------------------------------------------------------------|
| Hermes M110 | Módulo de 8 entradas digitales                                   |
| Hermes M120 | Módulo de 4 entradas analógicas para bucle 04/20mA o 0-10v       |
| Hermes M121 | Módulo de 4 entradas analógicas para sondas de temperatura PT100 |
| Hermes M130 | Módulo de 6 salidas a relé                                       |

Como norma general se instalará el modelo M102 para el control de alivios en todas las instalaciones electrificadas y se escogerá la fuente de alimentación UPS2420 junto con su batería correspondiente.

### 11.2.2. MODELO NEMOS N200 - LP - LQ

La serie N200 o LP <u>se empleará en las instalaciones que no cuentan</u> <u>con suministro de energía eléctrica</u>.

Se trata de equipos autónomos, compactos, con su propia envolvente, que garantiza un grado de protección IP67 (IP68 en el caso de N200) y con características similares al M102 en lo concerniente a funciones y configuración. Lógicamente, cuenta con funciones añadidas para gestionar el estado durmiente del dispositivo que permite ahorrar batería interna.

El modelo LP dispone de 8 entradas digitales, 4 entradas analógicas y 4 salidas de tensión para alimentar sondas analógicas.

La <u>serie N200</u> tiene 4 entradas digitales que pueden ser usadas también como caudalímetros, 2 entradas analógicas 4-20 mA y 2 salidas de tensión en rango 4 a 24 V para alimentar sondas analógicas. El NEMOS N200 está disponible en varias versiones. Se escogerá la versión con dos baterías para garantizar mayor autonomía (<u>N201</u>). Este será el <u>modelo a instalar por norma general</u> en las instalaciones sin alimentación eléctrica salvo que se necesite mayor número de señales, en cuyo caso se empleará el modelo LP.

Para garantizar la máxima autonomía de los equipos NEMOS se ha de escoger una sonda analógica que necesite poco tiempo de estabilización y tenga bajo consumo. Por ejemplo, la sonda hidrostática Waterpilot FMX 167 de 42 mm (heavy duty) de Endress Hauser se ajusta a estos requisitos. El explotador podrá elegir la que considere oportuna y que cumpla con los requisitos exigidos.

El <u>modelo LQ</u> dispone de 6 entradas digitales (2 de conteo, 2 de dirección y 2 de alarma) y **conectores estancos**. Al <u>no disponer de entradas</u>

<u>analógicas</u> solo se recomienda usarlo en casos especiales donde estás no sean necesarias ni previsibles, por ejemplo, junto a las <u>estaciones</u> <u>meteorológicas</u> <u>que funcionen de modo autónomo</u> para proporcional señal de lluvia fuerte integrada con el sistema de registro de alivios.

La vida útil de la batería o pilas de estos equipos depende de que entren en lo que se denomina estado "durmiente". En este modo el equipo no realiza ni acepta ninguna comunicación pues tiene apagado el módulo GSM/GPRS, reduciendo su operatividad a una comprobación de las entradas y los registros programados. La desactivación del estado "durmiente" se produce en los siguientes casos:

- Por una comunicación con el centro o encendido del módulo GSM según la programación de los temporizadores
- Por la conexión del puente J9 en la placa del NEMOS LP
- Por la colocación de un imán en la parte superior derecha (al lado de la antena) del NEMOS LQ o N200

El modo "durmiente" puede activarse con el comando "ENPOF" o desactivarse con el comando "DISPOF"

#### 11.2.3. ANTENAS:

Si con la antena básica no se puede garantizar una cobertura superior a 12 RSSI se instalará una antena de mayor ganancia. Como opción, el fabricante de los equipos suministra una antena omnidireccional de base magnética con 5 db de ganancia y otra tipo yagi direccional y 8 db de ganancia.

#### 11.2.4. MODELOS PREVIOS

La evolución en el desarrollo de los equipos MICROCOM que comenzaron como simples tele avisadores con funcionalidad de DATALLOGER y que, en las versiones actuales, ya ofrecen un sistema de Tele Control modular y escalable, ha propiciado que hoy podamos encontrarnos distintos modelos instalados.

A continuación describimos los posibles modelos que, además de los ya mencionados y a fecha de este documento, podemos encontrarnos instalados así como sus principales características:

#### A1. HERMES M100

Dispone de 2 entradas digitales, 2 entradas analógicas y 1 salidas digitales. Al igual que el M102 es modular y escalable con los equipos de la serie. Las principales diferencias con el nuevo modelo son la cantidad de E/S y la gestión de la interfaz MODBUS.

#### A2. HERMES TCR200

Dispone de 8 entradas digitales, 4 entradas analógicas y 4 salidas digitales. Es muy similar al M102 en capacidades. No obstante, tiene menor velocidad de proceso, no es modular y en las últimas versiones de firmware sus canales matemáticos se han reducido a 4.

#### A3. HERMES TCR120

Dispone de 8 entradas digitales, 4 analógicas y 4 salidas digitales. No dispone de comunicación GPR y solo proporciona aviso de alarmas vía SMS. La descarga de los registros analógicos se hace mediante GSM.

¡Totalmente descatalogado y sin revisiones desde el 2013!

## A continuación se muestra una imagen de cada uno de los modelos:





Serie M100

Hermes TCR-200

Y sus fuentes de alimentación / antenas:







Modelos basados en baterías:







Nemos LP

Nemos N200

Nemos LQ

Si se lanzase al mercado otro modelo que sustituya o mejore a los anteriores, se tendrá en consideración, debiendo requerir la consulta previa del Consorcio para su selección e instalación.

## 11.3. Dispositivos remotos de telemetría para SCADA-EM

El SCADA de Estaciones Meteorológicas se fundamenta en el software GEONICA TELETRANS que comunica con las estaciones de la misma marca mediante protocolo propietario. La estación meteorológica remota que se instale debe ser capaz de comunicar con el sistema TELENTRANS de forma transparente, volcar los mismos datos que se especifican en la norma dentro del sistema SCADA-E y mantener la misma integridad del sistema. Es por esto que se vienen instalando como estaciones meteorológicas en las EDAR la serie METEODATA 3000C de este tipo de estaciones.

A continuación se especifica algunas normas y recomendaciones a tener en cuenta en la selección e instalación de estas estaciones remotas u otras similares:

La estación y sus sensores deberán instalarse sobre torre y contar con un cuadro eléctrico convenientemente protegido para su acometida eléctrica. El pluviómetro podrá instalarse en un soporte vertical independiente,

Debido al ambiente corrosivo en el que muchas se instalan, bien por la cercanía del mar o bien por la acidez de los gases generados en las propias EDAR, se ha observado que el mejor resultado lo presentan las <u>envolventes</u> plástica (de polipropileno u otro material de equivalentes o mejores

características(. Este es el tipo de envolvente que se escogerá para la estación. En la serie GEONICA METEODATA 3000 corresponde a los modelos terminados en "CP".

El sistema se completará con baterías, panel de visualización con teclado y con un panel solar convenientemente



SERIE 3000CP

dimensionado de modo que, en caso de caída de tensión de red y sistema alternativo, el sistema proporciones una autonomía mínima de 24 horas.

El contratista o explotador deberá contratar una <u>línea de telefonía móvil</u> que incluya <u>conexión de datos</u> así como una <u>IP Fija</u>.

#### 11.4. Antenas

En relación a la instalación de la **antena** para el equipo de telemetría se observarán las siguientes normas generales:

- El modelo de antena seleccionado y su instalación deben garantizar una <u>cobertura superior a 10 RSSI</u>. Existen varios tipos de antenas con distintas ganancias. En instalaciones con cobertura GPRS deficiente se escogerá el tipo de antena que permita mantener el nivel RSSI adecuado para una conexión permanente (>10)
- La longitud de cable de antena debe ser la menor posible.
- Las antenas magnéticas se colocarán verticalmente sobre una superficie metálica lo suficientemente amplia para garantizar su plano de tierra.
- En la instalación del cable de antena no se formaran curvas de más de 90º.

Si se desea, en los equipos MICROCOM, puede registrarse la señal GSM/GPRS mediante un canal matemático. La fórmula para obtener el **RSSI** es "GSM(0)" y para el correspondiente valor en **dbm** "(GSM(0)\*2)-113".

### 11.5. Cableado

En la instalación del cableado de las distintas señales y muy particularmente del de antena o cables de datos, se evitará el paso del mismo a menos de 50 cm de cables de alimentación de corriente alterna, reactancias, motores u otras fuentes capaces de producir interferencias electromagnéticas.

Si en alguna instalación es imprescindible que cruce sobre otro cableado eléctrico deberá hacerlo en ángulo de 90°.

## 11.6. Fuentes de alimentación y SAIs

El equipo de telemetría contará con fuente de alimentación y baterías capaces de mantener el sistema en funcionamiento, al menos, 24 horas ante un corte total de alimentación.

## 11.7. Instrumentación digital y analógica

Se recomienda, aunque no resulta obligado, que la inyección de señales al cuadro se efectúe a través de relés intermedios, caso de señales digitales, y de aisladores galvánicos, caso de las variables analógicas, instalados fuera del ECE. Esto puede evitar problemas derivados de bucles de tierra, altas impedancias de lazos e interferencias diversas.

Las señales de entrada al equipo de Telemetría podrán ser analógicas o digitales. Con excepción de los caudalímetros de agua tratada en las EDAR, no se contempla, a no ser en casos muy justificados y aprobados previamente por el CAA, la comunicación directa con otros dispositivos programables (otros PLCs o RTUs) a través de puertos de comunicación de datos serie (buses) o directamente por sus salidas analógicas o digitales.

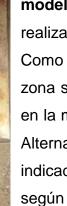
A continuación se incluyen algunas recomendaciones fruto de la experiencia de distintos integradores en la implantación de diversas instrumentaciones relacionadas con el SCADA-CE:

#### 11.7.1. Selectores de mantenimiento

En relación con el selector de mantenimiento la recomendación es instalar un **selector CON LLAVE** en el frontal del cuadro para proporcionar una señal de mantenimiento al avisador. El selector solo permitirá la extracción de la llave en la posición de desactivado, para evitar que quede activado por olvido al abandonar la instalación. Por ese mismo motivo, la cerradura debe estar <u>amaestrada con la llave de la estación</u> (de existir) o <u>unida</u> físicamente al sistema de apertura de la estación.

#### 11.7.2. Detector de desbordamiento

Complementa o, en algún caso, sustituye a la detección de desbordamiento por tratamiento lógico de la señal de una sonda analógica de nivel.

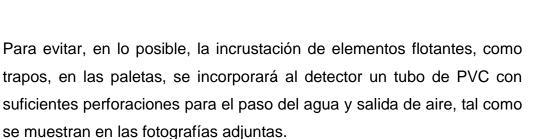

El dispositivo de detección que se instale deberá ser adecuado al ambiente y funciones que se precisan, siendo especialmente inmune a los problemas que habitualmente se manifiestan en saneamiento: deposiciones de grasas y/o jabones, flotantes, etc. Para ello, se seleccionaran aquellos que, dentro de un coste razonable, presenten menores necesidades de mantenimiento.

Hasta el momento se vienen instalando detectores basados en alguno de los siguientes principios de medida:

- Ultrasónicos
- De flotador sobre quía

- De paletas vibratorias
- Electromagnéticos

Al momento de escribir estas especificaciones y tras la experiencia con varios tipos de detectores se ha comprobado mayor fiabilidad en los




modelos basados en paletas vibratorias (Pruebas realizadas con la Sonda Endress & Hauser FTL260). Como norma general su instalación se ubicará en una

zona sin demasiadas turbulencias y cercana, en la medida de lo posible, al punto de alivio. Alternativamente, en caso de existir una placa indicadora del punto de alivio bien calibrado según el procedimiento indicado para las

sondas de nivel y esté situada en la misma estructura (canal, arqueta, etc.) del punto de alivio, el detector podría instalarse cerca de esta

placa donde sea fácil comprobar la correspondencia de niveles. En el modelo mencionado (FTL260) el punto de alivio se detecta en el hoyuelo de la las paletas, debiendo situar su punto medio en el nivel de alivio.



Otro sistema que se ha testeado y ha dado buenos resultado son los detectores de nivel ultrasónico. Concretamente aunque se han realizado pruebas con la sonda SICK UM18- 218161101, existen en el mercado sondas similares de otros fabricantes de referencia en instrumentación industrial. Al igual que las sondas de nivel ultrasónico la correcta configuración de los detectores ultrasónicos, su ubicación y

<u>sincronización con otras fuentes de ultrasonidos</u> en fundamental y de obligado cumplimiento en caso de utilizarse. Así, por ejemplo, en este tipo de sondas es importante su <u>configuración en modo ventana</u> y que está esté bien ajustada y calibrada.

Dado que el explotador se hace cargo de su funcionamiento y mantenimiento, por el momento será éste quien seleccionará el modelo que mejor satisfaga sus necesidades, previa consulta y aprobación del STyCA del CAA, siendo responsable el explotador del correcto funcionamiento, exactitud y ausencia de falsos positivos en la detección.

#### 11.7.3. Pluviómetro

Los pluviómetros deberán calibrarse según el procedimiento indicado por el fabricante y adjuntar un breve informe de calibración junto con la configuración del avisador. También debe revisarse diariamente (en el caso de los instalados en la EDAR) o semanalmente (en otros casos) si no están obstruidos por hojas u otros elementos similares.

En los casos susceptibles de producirse un "efecto rebote" del contacto que afecte a los pulsos leídos, se contemplará la instalación de un condensador de 1µf en los bornes de la señal de pulsos en el propio equipo de Telemetría.

#### 11.7.4. Medida de nivel

Se optará preferiblemente por sondas de nivel hidrostáticas a dos hilos (que miden presión relativa de la columna de agua y por tanto incorporan un tubo de compensación de la presión atmosférica) especialmente concebidas para su utilización en saneamiento. Por ejemplo, en el caso de adquirir sondas Endress Hauser, ampliamente instaladas en casi todos los sistemas, se optará por la Waterpilot FMX 167 de 42 mm (heavy

<u>duty</u>). No obstante se podrá optar por otra marca/modelo que cumpla requisitos mínimos.

Su instalación se efectuará dentro de un **tubo tranquilizador** de PVC con un diámetro ligeramente superior al de la sonda y que permita insertar/extraer la misma con facilidad, incluso con incrustaciones de grasas, jabones, etc. Los soportes y la tornillería será de acero inox. 316.

Preferiblemente se deberán poder extraer desde la zona seca, para lo cual puede ser necesario practicar algún orificio de sección adecuada en el forjado del solado. Esta opción de montaje facilita y reduce considerablemente los tiempos empleados en el mantenimiento.

Igualmente, se emplearán placas de acero inoxidable 316 grabadas, para establecer la posición del soporte de fijación de sonda y del nivel del rebosadero. Se acompañan imágenes de las mismas. Estas placas se situarán cerca de la vertical de la sonda. Sobre la de "soporte-sonda" se estampará la distancia que ha de existir entre el punto de fijación del anclaje de la sonda y el transductor de presión.







Marca de distancia soporte-sonda

El rango físico de la sonda será superior a la medida vertical desde el fondo del pozo o canal de entrada y el labio del vertedero.

La longitud del cable será la adecuada según instalación. Si esta fuese excesiva y con el ánimo de poder normalizar longitudes y reducir costes, se podrán instalar cajas adecuadas de conexión intermedias, en zonas

que en principio no sean inundables. En cualquier caso, se adoptará la precaución de <u>no cortar nunca un cable de sonda</u> pues con ello se destruiría el capilar de compensación de la presión atmosférica. Las cajas deberán tener un grado de protección adecuado al entorno (IP54 en zona seca e IP67 en zona húmeda).

El transductor de presión quedará a una altura aproximada de **30 cm del suelo**, para evitar su colmatación con fangos. Dicha altura (sobre la vertical del transductor) habrá de anotarse en la documentación a proporcionar al CAA. Hasta que el agua no alcance este nivel, la sonda **entregará 4 mA**, lo que representará volumen vacío.

De adquirirse sondas nuevas o reponer las existentes, los **20 mA** corresponderán a una altura ligeramente superior al labio de vertido (aprox, un 20% más) y coincidirá con el **rango físico superior** en metros del medidor.

En caso de utilizar **sondas ultrasónicas** de nivel para minimizar el mantenimiento, se debe tener en cuenta la necesidad de un correcto estudio del entorno así como la correcta ubicación y configuración de las mismas, lo que debe incluir la selección de algoritmos así como las curvas de eco apropiadas a la instalación en condición de vacío y llenado. También se debe configurar su sincronización con cualquier otra fuente de ultrasonidos presente en la instalación. A este respecto y como referencia en las instalaciones del CAA se han realizado pruebas con las sondas de nivel ultrasónica y controlador SIEMENS serie LUT400 proporcionando buenos resultados donde otras sondas ultrasónicas han fallado. La principal característica de esta nueva gama de controladores de nivel es la gestión inteligente y dinámica de la curva de ECO. En todo caso el explotador será responsable de que, sea cual sea la sonda escogida, se garantice una correcta y exacta medida de nivel continuo.

Para la situación de vertido, se anotará la medida proporcionada en tiempo real por la sonda al equipo de telemetría cuando la lámina de agua coincide con el borde del labio de alivio, pues dicho valor ha de ser utilizado en la configuración de la alarma en el avisador.

#### 11.7.5. Medida de caudal

Preferiblemente se seleccionarán medidores de caudal/volumen electromagnéticos de sección completa. Se valorará, según el proceso, si han de medir a sección parcial, es decir, parcialmente llenos.

Si es posible, se instalará un bypass con válvulas de corte que permitan la continuidad del servicio aun cuando sea preciso desmontar el caudalímetro, o bien se contará con un inserto para sustituir el contador cuando se desmonte el mismo. Por supuesto, se adoptarán las precauciones de montaje típicas para este tipo de medidores, entre otras: disposición de válvulas de aislamiento para montaje/desmontaje, aseguramiento de que se encuentra llena toda la sección del elemento primario para cualquier condición de caudal, montaje vertical hacia arriba si se sospecha existencia de burbujas de aire, registro para limpieza si el montaje es inclinado, respeto de tramos rectos aguas arriba y aguas abajo, etc.

La arqueta donde se instale el medidor ultrasónico deberá contar con desagüe o, en su defecto, pozo con bomba de achique para evitar posibles inundaciones que dañen la electrónica del sensor.

La electrónica (transmisor) contará con indicador caudal/volumen local. Podrá fijarse al cuerpo del medidor si la lectura puede ser accesible desde la zona seca. En caso contrario, el convertidor/indicador se ubicará dentro de la caseta de la instalación.

Dispondrá de una salida analógica 4-20 mA para, entre otros dispositivos que puedan emplearse, entregar el valor de caudal medido al equipo de telemetría. El ajuste se efectuará del siguiente modo:

4 mA → limite físico inferior de caudal en l/s, es decir, cero.
20 mA → límite físico superior de caudal en l/s.

También contará con una salida digital de impulsos para ser contados por un equipo exterior y, si es posible, de salida en bus para proporcionar información directa a un autómata.

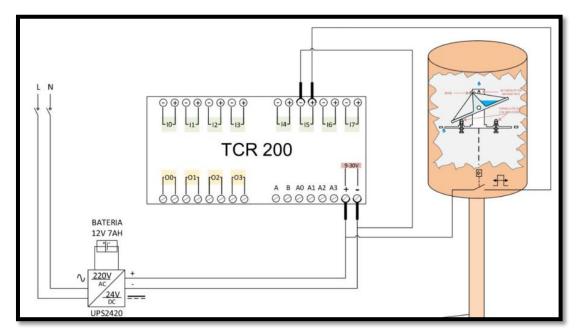
El montaje se efectuará de modo que la sección del caudalímetro se encuentre siempre llena de agua y sin presencia de burbujas o acumulación de aire y, fundamentalmente, respetando las distancias aguas arriba y aguas abajo respecto a otros equipamientos hidráulicos que permitan un funcionamiento estable y preciso.

# 12. Directrices sobre montaje, instalación, configuración/programación y puesta en marcha

Se asegurará la correcta instalación eléctrica de la estación mediante la reglamentaría inspección de un OCA (Organismo de Control Autorizado). Independientemente de la misma, durante la instalación, se comprobará que la tensión entre los bornes del negativo o masa, en la fuente de alimentación y equipo de telemetría, y la tierra de la instalación sea cero, corrigiendo cualquier anomalía al respecto.

Para los equipos de telemetría se recomienda el uso de la fuente UPS2420 pues su rango de alimentación es superior (85-264Vac 43-63Hz) gestionando también mejor pequeñas fluctuaciones eléctricas.

## 12.1. Equipos y señales digitales


El conexionado de las señales digitales se efectuará mediante contactos libres de potencial.

## 12.1.1. Pluviómetros

Cuando se instale un pluviómetro directamente a un equipo de telemetría se recomienda tener en cuenta las siguientes normas:

- Como norma general en su instalación se respetará una distancia de 2 a 4 veces la altura de los objetos cercanos situados a su mismo nivel, como muros o árboles
- En zonas con clima extremo se puede instalar un calentador. En este caso se conectará a una fuente de alimentación independiente.

El cableado no debe transcurrir en paralelo cerca de otro cableado eléctrico ni aproximarse a ninguna fuente susceptible de generar interferencias electromagnéticas.



Ejemplo de conexionado pluviómetro a equipo de telemetría

En el **Anexo III sección A2** se recoge el procedimiento de calibración de un pluviómetro típico. En el sitio WEB de Tele Control también está disponible para su descarga las fichas guía de este procedimiento y recomendaciones.

## 12.2. Equipos y señales analógicas

Preferiblemente, se empleará la señal normalizada 4-20mA en la lectura de señales analógicas. El empleo de otro tipo deberá ser justificado y validado por el CAA.

## 12.2.1. Calibración de señales analógicas 4-20 mA

Para su correcta medida las señales analógicas conectadas a los avisadores deben calibrarse cada vez que se producto una

modificación sobre las mismas. Para ello y partiendo de la premisa que la sonda está previamente calibrada, debe ajustarse el valor de lectura en el equipo de telemetría para que se corresponda con el inicio y fin de escala de la sonda.

Para la correcta lectura de las señales analógica en el equipo, las señales conectadas al mismo deben calibrarse individualmente en la instalación inicial y cada vez que se produzca una modificación sobre los sensores. Para ello, partiendo de la premisa de que la sonda está previamente calibrada en fábrica de forma que 4mA corresponden al valor de ingeniería F.E. inferior y 20 mA al valor de ingeniería F.E. superior, debe ajustarse el valor de lectura en el equipo de telemetría para que se corresponda con el inicio y fin de escala real y no el teórico de la sonda.

En el **Anexo III sección A1** se adjunta un ejemplo de un posible método calibración en los equipos de telemetría MICROCOM.

## 12.3. Parámetros generales

Estas son algunas consideraciones generales en la configuración de los equipos de telemetría de la marca MICROCOM:

- En la lista de autorizados se debe especificar siempre el teléfono del centro servidor del CAA como prioridad 0 y nivel de autorización 3 (ZEUS). Es decir: +34648652018,Prio=0,PRV3,MASKMODE0
- En las instalaciones con alimentación eléctrica permanente se debe configurar la conexión GPRS como conexión permanente. Se solicitará al CAA la dirección IP y puerto de comunicación. Se puede ver un ejemplo de la pantalla de configuración en el Anexo III sección A3.

- Se debe configurar siempre el número propio de la estación en formato internacional (+34xxxxxxxxxx) aún en los casos en los que también se disponga de numeración corta corporativa. Si los teléfonos de la estación, guardia o administración son corporativos con numeración corta, los destinatarios en la lista de asociados a las alarmas se deben especificar con el número corto.
- Se debe configurar siempre las coordenadas geográficas de la estación en el propio equipo.
- El *inicio del equipo debe generar un evento*, ser registrado y transmitido inmediatamente por GPRS al servidor. Para ello, a fecha de estas especificaciones y con la última versión de firmware instalada en el dispositivo, se puede utilizar la utilidad de terminal para enviar el comando "POWERUPMACRO=x" donde x es el número de macro a utilizar al inicio. A partir de este macro se pueden realizar las operaciones necesarias en el inicio, como activar un flag asociado al evento de inicio y registrarlo. Para desactivar la función se enviará al equipo el comando "POWERUPMACRO".

## 13. Obligaciones del contratista (explotador)

#### 13.1. TRABAJOS PREVIOS

## 13.1.1. Coordinación con CAA previa implantación del sistema

En cualquier nueva implantación y previamente a cualquier trabajo o acopio de material el contratista o explotador deberá promover una reunión de coordinación con los responsables del CAA. En esta reunión presentará su plan de trabajo y lista de materiales por estación asociada a cada señal de la misma.

## 13.2. DURANTE LA IMPLANTACIÓN

Durante el proceso de implantación y a su terminación el contratista deberá realizar los siguientes trabajos y verificaciones:

## 13.2.1. Suministro, montaje, instalación, configuración, programación y puesta en marcha en modo local

 Verificaciones eléctricas y protocolo de pruebas: El explotador, al término de los suministros y trabajos concertados y antes de la comprobación definitiva de los mismos por el CAA, deberá realizar una verificación completa de la instalación, de la cual extenderá informe que habrá de trasladar al Consorcio antes de que este pase a realizar la configuración y pruebas definitivas.

## 13.2.2. Contratación de servicios de comunicaciones y otras gestiones

El contratista contratará los <u>servicios de comunicaciones necesarios</u> con su proveedor habitual u otro, si se necesitase por razones de calidad

del servicio, para el completo funcionamiento del sistema remoto de telemetría. Entre los servicios de comunicaciones contratados deberá incluirse una <u>línea de comunicación ADSL</u>, de fibra o similar totalmente independiente y dedicada al sistema de telemetría y comunicaciones informáticas con el CAA. Esta línea no pasará por las redes corporativas de la empresa matriz del explotador y deberá poder ser completamente configurada según las políticas de seguridad establecidas por el CAA y recogidas en las "Especificación técnica para la integración de equipos y señales en la plataforma de control de la Explotación".

Como norma general se establece que la tecnología de comunicación será GPRS, lo que determina que en las estaciones remotas se habrá de habilitar la comunicación de datos en la tarjeta SIM, además de instalar una antena con la ganancia apropiada para dar una buena cobertura GSM/GPRS

Los servicios de comunicación remotos (en aliviaderos, bombeos, EDARs, etc.) a contratar (o implementar en su caso) correrán a cargo del explotador. Ello comprendería el suministro e instalación de la correspondiente tarjeta SIM, el contrato de servicio con el operador u operadores, el coste del tráfico y cuotas fijas/variables precisadas, etc.

Se realizarán también cuantas gestiones sean necesarias con terceros y organismos implicados para la adecuación técnica y de seguridad de las instalaciones, en todo aquello que sea afectado por las actuaciones que comprende la integración de remotas en el sistema de registro de alivios o SCADA-CE.

## 13.2.3. Elaboración de documentación completa, estructurada y fiable

Al término de las obras, se deberá entregar al Consorcio un dossier completo de documentación as-built (obra realmente ejecutada) según el alcance y formatos establecidos por el CAA. No obstante, para la realización de las pruebas definitivas a efectuar por el Consorcio, se habrá de poner a disposición de los técnicos asignados por éste una copia de aquella documentación que sea imprescindible para la ejecución de las comprobaciones, tales como los siguientes entregables:

- Esquemas y planos actualizados en formato editable de todos los elementos que conforman el sistema remoto de telemetría y sus interconexiones.
- Análisis funcional del mismo
- Manuales de equipos
- Configuraciones de los equipos con nombre normalizados
- Dosier fotográfico donde se observe tomas generales del sistema y la estación y detalle de: equipo, bornes de conexión, elementos de protección, sondas instaladas y distintas conexiones de las mismas, colocación de la antena, recorrido del cableado y letrero público de la estación.
- Tabla con la relación de nombres de equipos junto con su número de serie, número de teléfono asociado y coordenadas GPS en formato decimal (Google). En el caso de las estaciones meteorológicas o cualquier otro equipo con dirección IP Fija se incluirá en la tabla tanto su dirección IP como cualquier nombre de usuario y contraseña necesario para su configuración.
- Certificados y documentación de calibración de la estación meteorológica.

#### 13.2.4. Formación de su personal

Comprende todo lo necesario para instruir al personal de mantenimiento en la función, uso, conservación e inspección de los sistemas instalados, en todo aquello que pueda afectar al explotador una vez puesto el sistema en servicio.

El temario y alcance de la formación será previamente consensuado con el CAA.

# 13.2.5. Coordinación con el CAA para traslado de información y programación al centro de control y puesta en servicio del mismo por este último

El proceso de alta de una nueva estación en el SCADA-CE pasa por el traslado previo de la programación del equipo de telemetría al servicio de Telemática del CAA y la realización de las pruebas necesarias en campo junto con el técnico asignado por el Consorcio, quien validará la instalación según las especificaciones vigentes.

### 13.2.6. Elaboración de gamas de mantenimiento

Finalizados los suministros y trabajos, **el explotador habrá de integrar/modificar las gamas de mantenimiento en el GMAO** (tanto preventivas como correctivas) y que afecten al sistema implantado, para advertir a los operarios de las precauciones a adoptar en caso de intervención, de las comunicaciones informativas que se han de generar y de la información a realimentar en el sistema al término de los trabajos

Así, se incluirá en las gamas de mantenimiento del COSWIN todos los equipos relacionados con el sistema remoto de telemetría del SCADA-CE,

asignando una consideración de <u>equipo "Esencial"</u> a su nivel de criticidad (tiempo máximo de resolución de incidencia: *1 semana*).

# 13.2.7. Dotación de equipos de repuesto y herramientas de programación

El contratista deberá contar con los siguientes repuestos y herramientas de mantenimiento en la EDAR:

- Portátil, cables de conexión y adaptadores necesarios para la programación directa de los equipos de telemetría en campo. El portátil deberá ser plenamente configurable y disponer de acceso completo al usuario administrador del sistema por parte del personal autorizado de planta para su configuración y mantenimiento.
- Modem GSM y tarjeta SIM activa para configuración en el equipo portátil u otro de planta para la configuración remota del sistema de telemetría

Un *equipo de telemetría completo*, fuente de alimentación, baterías y un módulo de ampliación por cada tipo de los que se hallen instalados en el sistema explotado o, al menos, que permita su reemplazo y restablecimiento de las comunicaciones en caso de avería.

### 13.3. TRAS LA IMPLANTACIÓN

Estas son las funciones que le corresponden al contratista una vez puesto en servicio el sistema remoto de telemetría para el SCADA-CE o instalaciones correspondientes:

# 13.3.1. Revisiones periódicas según plan de mantenimiento (tabla de control)

El Explotador realizará el control periódico del funcionamiento del sistema tanto en las instalaciones remotas, como en el centro de control. Para ello, se dotará al explotador de las credenciales necesarias para que pueda consultar la información depositada en el centro de control por medio de un servicio Web. La verificación comprende el aseguramiento del funcionamiento de las comunicaciones, del adecuado registro y representación gráfica en la aplicación SCADA-CE y de la validez de la información registrada (alarmas e históricos)

Se prestará especial atención a la calibración de sondas de nivel en relación con las situaciones de alivio/vertido. En definitiva, se velará por garantizar la calidad y veracidad de los datos, informando inmediatamente al CAA de cualquier incidencia que afecte a la detección, registro o representación de la información

En todo caso, a continuación se resumen los principales puntos de control a comprobar:

- Comprobación de comunicaciones (conexión on-line, envío de SMS para verificar su respuesta por parte del equipo de tele control, etc.)
- Comprobación de registro de alarmas y señales en el centro de control (conexión con SCADA-CE para comprobar captura y almacenamiento de datos de alarmas y representación de gráficas).

- Cumplimiento de las ordenes de trabajo generadas por la plataforma de mantenimiento (COSWIN)
- Comprobación de la calidad y veracidad de la información (conexión con el SCADA-CE para verificar que las curvas y alarmas registradas corresponden con la realidad del proceso y que las señales de origen se encuentran correctamente ajustadas). Como ayuda a la comprobación de la calidad en la medida se instalan dos sondas, una analógica y otra digital. Se debe garantizar que ambas sondas marquen el punto de alivio al mismo tiempo y con correspondencia exacta (1 cm) en la cota de desborde. Un desajuste posterior entre las sondas a la primera y correcta calibración facilita la identificación de problemas en alguna de las sondas o la necesidad de realizar un correcto mantenimiento. Por ejemplo, una sonda hidrostática podría estar tupida en su base y falsear la medida por detectar menor presión o un detector digital podría estar bloqueado por trapos o suciedad acumulada. Se incluirá en las gamas de mantenimiento de COSWIN la comprobación del disparo de las sondas digitales y la correspondencia de la señal analógica con el nivel real de agua, al menos, con periodicidad mensual y siempre con el selector de mantenimiento activo.

### 13.3.2. Elaboración de informes periódicos

**Elaboración de Informe mensual** en el que se recoja como mínimo los siguientes campos:

| · Nombre del sistema                                          |   |
|---------------------------------------------------------------|---|
| · Nombre de la estación remota                                |   |
| · Versión de especificaciones técnicas para la integración de | е |
| equipos disponible en planta                                  |   |
| · Por cada estación remota:                                   |   |

| - | Versión | de firmware |  |
|---|---------|-------------|--|
|---|---------|-------------|--|

- Instrumentación de campo (analógica y digital) ☑ ó 🗵
- Comunicaciones:
- Se han registrado valores, al menos, cada hora ☑ ó 区
- Nivel de señal GPRS \_\_\_\_\_ RSSI
- Si se ha realizado la carga de una nueva configuración, se ha enviado al CAA copia de la misma ☑ ó 区
- Registro de señales (alarmas y valores) en SCADA-CE ☑ ó
  ☑
- Comprobación de la validez y calidad de la información:
- Se han registrado falsos positivos en la señal de desborde digital ☑ ó ☒
- Se han registrado falsos positivos en el resto de señales digitales ☑ ó ⋈
- Se han producido salidas de rango o perdidas de conexión con alguna de las sondas analógicas ☑ ó 区
- Si se han producido episodios de alivio, se corresponde la señal de desborde digital con el cruce de la señal de nivel analógica en la cota de alivio ☑ ó ☒
- Se han recibido correctamente las alarmas GPRS, tanto analógicas como digitales, correspondiendo con los episodios de alivio ☑ ó ☒
- En caso de estaciones con pluviómetro, se ha registrado durante los episodios de lluvia la intensidad minutar máxima, el acumulado cada 10 minutos/ 1 hora y son razonables los registros ☑ ó ☒
- En caso de estaciones con registro de caudal, se dispone de datos homogéneos de caudal instantáneo, medio y volumen acumulado ☑ ó ☒

A lo largo del mes se habrán revisado, al menos una vez, todos los aspectos anteriormente mencionados. Los resultados del informe se

basarán en toda la información registrada en la plataforma SCADA-CE desde la fecha del anterior informe hasta la fecha del nuevo. Cualquier comprobación con resultado negativo (**(X))** debe acompañarse con nota aclaratoria del problema y soluciones llevadas a cabo o programadas para la semana siguiente de su detección.

#### 13.3.3. Inclusión de nuevas señales

El contratista quizás necesite incluir nuevas señales como consecuencia de una exigencia del Consorcio o a iniciativa propia. En el primer caso, para integrar las mismas en el SCADA-CE y en el segundo, como mejora voluntaria o para facilitar sus labores de mantenimiento mediante mensajes de alarma con una configuración y frecuencia independiente. El coste de la dotación de nuevos módulos o equipos podrá correr por cuenta del CAA o del Explotador, lo cual será establecido por el STyCA.

# 13.3.4. Actualizaciones de programas, documentación, configuraciones y comunicación al CAA

Entre las labores de actualización y documentación permanente del explotador se encuentran las siguientes:

- Reconfiguración de equipos de Telemetría como consecuencia de la inclusión de nuevas señales y/o alarmas o como consecuencia de una petición del Consorcio con el fin de acomodar los registros y transmisión de datos a las necesidades del momento.
- Mantener actualizado el Firmware de los equipos y se comprobación antes de cualquier intervención de que se dispone de la última versión de las presentes especificaciones técnicas para las tareas de mantenimiento
- Actualización, custodia, archivo y entrega al CAA de la documentación original elaborada por el explotador. Incluye planos, esquemas, fichas, de datos, ficheros de configuración, certificados CE, etc. A este respecto cualquier cambio en la configuración de los equipos debe ser comunicado inmediatamente al CAA junto con una copia de la nueva configuración.

### 13.3.5. Comunicación de incidencias y realimentación de información una vez solventadas

Se deberá comunicar al CAA cualquier eventualidad que pueda afectar a la detección, registro o representación gráfica de variables en el centro de control. Esto incluye, por ejemplo, cualquiera de las siguientes situaciones:

### ESPECIFICACIÓN TÉCNICA PARA LA INTEGRACIÓN DE EQUIPOS Y SEÑALES EN LA PLATAFORMA DE CONTROL DE LA EXPLOTACIÓN (SCADA-CE)

- Interrupciones temporales o permanentes de las señales de detectores o medidores de campo por actuaciones de mantenimiento correctivo o preventivo.
- Reajuste, reposicionamiento o sustitución de un equipo de medido.
- Fallos de tensión allí donde no hay detección de esta eventualidad.
- Otras situaciones similares.

### Anexo I: Glosario de Términos

A continuación definimos varios términos, siglas y acrónimos mencionados en este documento, anexos asociados o especificaciones paralelas.

| Activos                                                                                                                 | Bienes, derechos o recursos controlados económicamente por una                                                                                                                                                                                  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CAA                                                                                                                     | Consorcio de Aguas de Asturias                                                                                                                                                                                                                  |  |  |  |  |  |
| CONSIGNA                                                                                                                | Valor de la variable de control que debe mantener el proceso de acuerdo a la orden enviada                                                                                                                                                      |  |  |  |  |  |
| CPU                                                                                                                     | Unidad Central de Procesamiento (Central Processing Unit)                                                                                                                                                                                       |  |  |  |  |  |
| csv                                                                                                                     | Archivo de texto para el intercambio de la información donde los datos se separan generalmente por comas (Comma-Separated Values)                                                                                                               |  |  |  |  |  |
| DNP3                                                                                                                    | Protocolo de comunicaciones abierto y no propietario que permite solicitudes y respuestas con múltiples tipos de datos en un solo mensaje. Los datos se entregan con estampación de tiempo en origen.                                           |  |  |  |  |  |
| Driver  Controlador de Dispositivo. Programa utilizado por el Sister para comunicarse con un dispositivo en particular. |                                                                                                                                                                                                                                                 |  |  |  |  |  |
| EBAR Estación de Bombeo de Aguas Residuales                                                                             |                                                                                                                                                                                                                                                 |  |  |  |  |  |
| EDAR                                                                                                                    | Estación Depuradora de Aguas Residuales                                                                                                                                                                                                         |  |  |  |  |  |
| ЕМІ                                                                                                                     | Interferencia electromagnética (Electro Magnetic Interference) o RFI (Radio Frecuence Interference)                                                                                                                                             |  |  |  |  |  |
| GPRS                                                                                                                    | Servicio General de Radio por Paquetes (General Packet Radio Service)                                                                                                                                                                           |  |  |  |  |  |
| JPG, PNG                                                                                                                | Formatos estándar para documentos gráficos                                                                                                                                                                                                      |  |  |  |  |  |
| LAN, WAN                                                                                                                | Red de Área Local (Local Area Network), Red de Área Extendida (Wide Area Network)                                                                                                                                                               |  |  |  |  |  |
| MODBUS/TCP                                                                                                              | Extensión del protocolo Modbus que permite utilizarlo sobre la capa de transporte TCP/IP                                                                                                                                                        |  |  |  |  |  |
| MODBUS                                                                                                                  | Protocolo de comunicaciones estándar de mayor disponibilidad en la industria para la conexión de dispositivos electrónicos. Abierto y no propietario, de implementación simple y sencilla. No dispone, por si mismo, de mecanismos de seguridad |  |  |  |  |  |

|                                                                                                                                                                                                                      | Protocolo de Hora en Red (Network Time Protocol): es un protocolo de                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| NTP                                                                                                                                                                                                                  | Internet para sincronizar los relojes de los sistemas informáticos a través                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                                                                                                                                                                                                                      | del enrutamiento de paquetes                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| PDF                                                                                                                                                                                                                  | Formato de Documento Portátil (Portable Document Format)                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| PLC                                                                                                                                                                                                                  | Controlador Lógico Programable (Programable Logic Controller) -                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| PPI                                                                                                                                                                                                                  | Programa de Puntos de Inspección                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Rack                                                                                                                                                                                                                 | Soporte metálico destinado a alojar equipamiento electrónico, informático y de comunicaciones. Sus medidas están normalizadas. Los racks se dividen en regiones de 1¾ pulgadas de altura (44,45 milímetros). En cada región hay tres agujeros que siguen un orden simétrico. Esta región es la que se denomina altura o U. |  |  |  |  |  |  |
| RAID                                                                                                                                                                                                                 | Conjunto Redundante de Discos Independientes (Redundant Array of Independent Disks)                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| RAM                                                                                                                                                                                                                  | Memoria de Acceso Aleatorio (Random Access Memory)                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| RSSI                                                                                                                                                                                                                 | Indicador de fuerza de la señal recibida (RSSI por las siglas del inglés Received Signal Strength Indicator)                                                                                                                                                                                                               |  |  |  |  |  |  |
| RTU                                                                                                                                                                                                                  | Unidad Terminal Remota (Remote Teminal Unit)                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| SCADA                                                                                                                                                                                                                | Supervisión, Control y Adquisición de Datos (Supervisory Control And Data Acquisition)                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| SCADA CE                                                                                                                                                                                                             | SCADA de Control de la Explotación                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| SCADA E                                                                                                                                                                                                              | SCADA de Explotación                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| SCA                                                                                                                                                                                                                  | Sistema de Control de Alivios                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| SNMP                                                                                                                                                                                                                 | Protocolo Simple de Administración de Red (Simple Network Management Protocol)                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Unidad de Estado Sólido (Solid-State Drive). Las principales ventajas respecto a los discos duros tradicionales: menos sensibles a los gol son prácticamente inaudibles y tienen un menor tiempo de acceso latencia. |                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| SWITCH                                                                                                                                                                                                               | Conmutador. Dispositivo digital de interconexión de equipos en red. La diferencia principal con un <b>HUB</b> (Concentrador) es que los SWITCH crean una especie de canal de conexión exclusivo entre el origen y el destino                                                                                               |  |  |  |  |  |  |
| TAG                                                                                                                                                                                                                  | Etiqueta. Identificador que representa a una variable y que hace referencia al lugar de la memoria donde se almacena un dato                                                                                                                                                                                               |  |  |  |  |  |  |
| VHDX                                                                                                                                                                                                                 | Formato de archivo de disco duro virtual de Microsoft (Hyper-V Virtual Hard Disk)                                                                                                                                                                                                                                          |  |  |  |  |  |  |

| VLAN  | Red de Área Local Virtual (Virtual LAN)                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STP   | (Spanning Tree Protocol) es un protocolo de red de nivel capa de enlace de datos en el modelo OSI. Su función es la de gestionar la presencia de bucles en topologías de red debido a la existencia de enlaces redundantes (necesarios en muchos casos para garantizar la disponibilidad de las conexiones). El protocolo permite a los dispositivos de interconexión activar o desactivar automáticamente los enlaces de conexión, eliminando los bucles de forma transparente al usuario. |
| SSH   | Intérprete de órdenes seguro (Secure Shell). Protocolo de acceso a máquinas remotas a través de una red de forma segura con cifrado de sesiones y gestión segura de claves. Está diseñado para reemplazar métodos de conexión más viejos e inseguros como Telnet, aportar cifrado a conexiones FTP y copiar archivos de forma segura, entre otros usos.                                                                                                                                     |
| LACP  | (Link Aggregation Control Protocol) es la implementación "open" del protocolo PAgP (Port Aggregation Protocol) basado en la tecnológica EtherChannel propiedad de Cisco. Básicamente permite la agrupación lógica de varios enlaces físicos Ethernet para ser tratados como un único enlace, permitiendo sumar la velocidad nominal de cada puerto físico utilizado y así obtener un enlace troncal de alta velocidad y redundancia de red. El número máximo de enlaces es 8.               |
| QoS   | Calidad de Servicio (Quality of Service). Se refiere a diversos mecanismos destinados a asegurar el flujo ágil de datos en la red, valiéndose de mecanismos de asignación de prioridades a diferentes tipos de tráfico que requieran tratamiento especial.                                                                                                                                                                                                                                  |
| TRUNK | Un Trunk es un enlace entre dos switch en el cual se canaliza todo el tráfico perteneciente a las VLANs. El puerto Trunk debe ser configurado en ambos extremos del enlace, es decir, en ambos switch.  En ocasiones se utiliza el término TRUNK para referirse a la agregación de varios canales físicos en un solo enlace con el fin de aumentar el ancho de banda (véase LACP)                                                                                                           |

|          | Modelo de Interconexión de Sistemas Abiertos (Open System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| osi      | Interconnection Model) es un modelo de referencia para los protocolos de la red de arquitectura en capas, creado en el año 1980 por la Organización Internacional de Normalización (ISO, International Organization for Standardization).  Este modelo está dividido en siete (7) capas o niveles:  Aplicación, Presentación, Sesión, Transporte, Red, Enlace de datos y Física  ste modelo está dividido en siete (7) capas o niveles:  Control de Acceso al Medio (Media Access Control), también conocido                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| MAC      | como "dirección física". Es un identificador de 48 (6 bloques hexadecimales) que identifican de forma única a una tarjeta o dispositivo de red. Los primeros 24 bits están determinados y configurados por el IEEE y los últimos 24 bits por el fabricante.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Ethernet | Estándar que determina las particularidades físicas y eléctricas que debe poseer una red tendida con este sistema. También conocido como IEEE 802.3, esta norma define, además de las características eléctricas, de longitud y diámetro de los cables, todos los elementos en juego dentro de una red. Los datos se envían y reciben utilizando un método conocido como "conmutación de paquetes" junto con el protocolo CSMA/CD (Carrier Sense Multiple Access with Collision Detection) cuya traducción al español es "Acceso múltiple con escucha de portadora y detección de colisiones", el cual es un protocolo utilizado en las redes Ethernet para evitar la colisión de paquetes en la red.                                                                      |  |  |  |  |  |  |  |
| SAI/UPS  | Sistema de Alimentación ininterrumpida (en inglés UPS: Uninterruptible Power Supply). Dispositivo capaz de almacenar energía eléctrica y proporcionarla por un tiempo limitado durante un corte del suministro eléctrico.  Los SAIs denominados Online (En línea) realizan una doble conversión de la corriente alterna. Los equipos conectados a la salida están alimentados en todo momento por las baterías del SAI mediante un Inversor. Está corrientes es limpia y con unos niveles regulados al contrario que los SAIs Offline, más baratos.  La unidad de potencia para configurar un SAI es el voltiamperio (VA), que es la potencia aparente, o el vatio (W), que es la potencia activa, también denominada potencia efectiva o eficaz, consumida por el sistema |  |  |  |  |  |  |  |

| VESA | Norma que define la forma de montar un monitor o televisor de forma segura y adecuada mediante un soporte y un patrón de agujeros correspondiente con el tamaño y peso del panel.  En realidad la norma que nos permite montar el monitor se denomina "Flat Mounting Interface" o FDMI (Interfaz de Montaje de Dispositivo Plano". Forma parte de la familia de especificaciones promovidas por Video Electronics Standars Association (VESA) para estandarización de distintas tecnologías.                                                                                                                                                                                                                                                                                                                                                                                                     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DVI  | Interfaz Visual Digital es una interfaz de video diseñada para obtener la máxima calidad de visualización posible en pantallas digitales, tales como los monitores LCD de pantalla plana y los proyectores digitales. Por extensión, al conector de dicha interfaz se le llama conector tipo DVI.  Los conectores DVI se clasifican en tres tipos en función de qué señales admiten:  • DVI-D (sólo digital)  • DVI-A (sólo analógica)  • DVI-I (digital y analógica)  A veces se denomina DVI-DL a los conectores que admiten dos enlaces                                                                                                                                                                                                                                                                                                                                                       |
| НДМІ | Interfaz Multimedia de Alta Definición (High-Definition Multimedia Interface o HDMI («»). Norma de audio y vídeo digital cifrado sin compresión. Existen diferentes versiones según su evolución. Las dos últimas son:  V1.4: Permite enviar vídeo y audio de alta definición, datos y video en 3D. La resolución máxima en esta norma es XHD (eXtended High Definition) soportnado vídeo de hasta 4092x2160 (24 imágenes por segundo) o de 3840 x 2160 (a 30 imágenes por segundo).  Otra importante novedad de esta revisión de la norma es que permite la posibilidad de enviar y recibir datos a través de una conexión Ethernet incorporada en el propio cable con velocidades de hasta 100 Mbit/s.  V2.0: Aumenta el ancho de banda de 10.2 Gbit/s a 18 Gbit/s permitiendo resoluciones 4K a 50/60 (2160p), 32 canales de audio y soporte de relación de aspecto 21:9 entre otras mejoras. |

# Anexo II: Tabla de Especificaciones. Señales, Alarmas, Frecuencias.

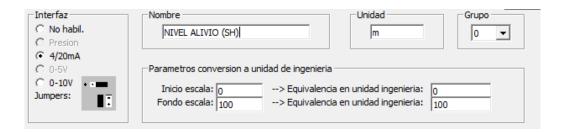
A continuación se incluye tabla guía para la selección de nombres de canales

para cada señal tipo principal, textos de alarmas asociadas y frecuencias de registro y transmisión:

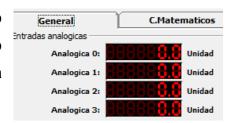
| LEYENDA |                                     |          |                                 |  |  |
|---------|-------------------------------------|----------|---------------------------------|--|--|
| SIMBOLO | SIGNIFICADO                         | SIMBOLO  | SIGNIFICADO                     |  |  |
| QI      | Caudal Instantaneo                  | N/A      | No Aplica                       |  |  |
| QM      | Caudal Medio                        | NA       | Contacto Normalmente Abierto    |  |  |
| VOL     | VOL Volumen NC                      |          | Contacto Normalmente Cerrado    |  |  |
| C/3600s | Registrar al cambio y a 3600s       | xxx      | Nombre Canal BY-PASS            |  |  |
| 4-20    | Señal 4-20 mA                       | ууу      | Nombre Caudalimetro             |  |  |
| MODBUS  | MODBUS Señal directa por MODBUS #ES |          | #+Numero de Estación Secundaria |  |  |
| 15      | Número 1 al 5                       | [Nombre] | Nombre identificativo opcional  |  |  |
| UV      | Ultravioleta                        | COLOR:   | Señales Aliviaderos             |  |  |
| Tx.     | Transmisión                         | COLOR:   | Señales EBAR                    |  |  |
| (Sx)    | Tipo de sonda (x-> U,H,R, etc)      | COLOR:   | Señales EDAR                    |  |  |

| ESDECITICACIONES DATA SENAILES SCADA-CE |                               |                                        |                  |              |                 | Estado de la Estación |                      |         |  |
|-----------------------------------------|-------------------------------|----------------------------------------|------------------|--------------|-----------------|-----------------------|----------------------|---------|--|
|                                         | SEÑALES *                     | TEXTO ALARMA                           | Hedded           | Time         | ALI<br>Registro | VIO                   | NORI                 | Tx.     |  |
|                                         | NIVEL AGUA (Sx)               | ALIVIANDO                              | Unidad<br>m      | Tipo<br>4-20 | 60s/10%         | Tx.                   | Registro<br>600s/10% | TX.     |  |
| l                                       | NIVEL POZO BOMBEO (Sx)        | REBOSE POZO BOMBEO                     | m                | 4-20         | 60s/10%         | 003                   | 600s/10%             |         |  |
|                                         | QI INCORPORA (Sx)             | N/A                                    | I/s              | 4-20         | 60s/10%         | 60s                   | 600s/10%             |         |  |
|                                         | POSICIÓN COMPUERTA            | N/A                                    | %                | 4-20         | 5%              | 60s                   | 600s/10%             |         |  |
|                                         | SULFHRÍDICO                   | EXCESO SULFHÍDRICO                     | ppm              | 4-20         | 5%              | 003                   | 600s/5%              |         |  |
|                                         | PRESIÓN                       | PRESIÓN ALTA / BAJA                    | bar              | 4-20         | 5%              |                       | 600s/5%              |         |  |
|                                         | CONDUCTIVIDAD                 | CONDUCTIVIDAD ALTA / BAJA              | mS/cm            | 4-20         | 5%              |                       | 600s/5%              |         |  |
|                                         | PLUVIOMETRIA                  | LLUVIA FUERTE (ANALÓGICA)              | I/m <sup>2</sup> | 4-20         | 376             |                       | 600s/378             |         |  |
| ပ္ခ                                     | QI AGUA BRUTA (Sx)            | Opcional                               | I/m              | 4-20         | 60s/10%         |                       | 600s/10%             |         |  |
| ANALÓGICAS                              | ` '                           | •                                      |                  | BUS          | 60s/10%         |                       |                      |         |  |
| 8                                       | QI AGUA TRATADA (Sx)          | Opcional                               | I/s              |              |                 |                       | 600s/10%             | 3600s   |  |
| ğ                                       | QI BY-PASS GENERAL (Sx)       | Opcional                               | I/s              | 4-20         | 60s/10%         |                       | 600s/10%             |         |  |
| ▼                                       | QI BY-PASS PRETATIMIENTO (Sx) | Opcional                               | I/s              | 4-20         | 60s/10%         |                       | 600s/10%             |         |  |
|                                         | QI BY-PASS BIOLOGICO (Sx)     | Opcional                               | I/s              | 4-20         | 60s/10%         |                       | 600s/10%             |         |  |
|                                         | VOL AGUA TRATADA x1h          | Opcional                               | m³               | BUS          | 60s/10%         |                       | 3600s/10%            |         |  |
|                                         | QM AGUA TRATADA x1h           | Opcional                               | I/s              | 4-20         |                 |                       | 3600s/10%            |         |  |
|                                         | NIVEL AGUA BY-PASS GENERAL    | ALIVIANDO BY-PASS GENERAL              | m                | 4-20         | 60s/10%         |                       | 600s/10%             |         |  |
|                                         | NIVEL AGUA PRETRATAMIENTO     | ALIVIANDO PRETRATAMIENTO               | m                | 4-20         | 60s/10%         |                       | 600s/10%             |         |  |
|                                         | INTENSIDAD UV                 | INTENSIDAD UV ALTA / BAJA              | A                | 4-20         |                 |                       | 600s/10%             |         |  |
|                                         | QI BY-PASS xxx (Sx)           | Opcional                               | I/s              | 4-20         | 60s/10%         |                       | 600s/10%             |         |  |
| ш                                       | NIVEL AGUA xxx                | ALIVIANDO xxx                          | m                | 4-20         | 60s/10%         |                       | 600s/10%             |         |  |
| l                                       | DESBORDE ALIVIADERO           | ALIVIANDO (DIGITAL)                    |                  | NC           | Cambio          | Cambio                | C/3600s              | C/3600s |  |
|                                         | MARCHA BOMBA 1                | N/A                                    |                  | NA           | Cambio          |                       | C/3600s              | 3600s   |  |
|                                         | MARCHA BOMBA 2                | N/A                                    |                  | NA           | Cambio          |                       | C/3600s              | 3600s   |  |
|                                         | MARCHA BOMBA 3                | N/A                                    |                  | NA           | Cambio          |                       | C/3600s              | 3600s   |  |
|                                         | MARCHA BOMBA 4                | N/A                                    |                  | NA           | Cambio          |                       | C/3600s              | 3600s   |  |
| LU                                      | MARCHA BOMBA 5                | N/A                                    |                  | NA           | Cambio          |                       | C/3600s              | 3600s   |  |
| ا <sub>د</sub> ا                        | MANTENIMIENTO                 | EN MANTENIMIENTO                       |                  | NA           | Cambio          |                       | C/3600s              | 3600s   |  |
| Щ                                       | FALLO TENSION GENERAL         | FALLO TENSIÓN GENERAL                  |                  | NC           | Cambio          | Cambio                | C/3600s              | C/3600s |  |
| DIGITALES                               | FALLO TENSION TELEMETRÍA      | FALLO TENSIÓN TELEMTRÍA                |                  | NA           | Cambio          | Cambio                | C/3600s              | C/3600s |  |
| 음                                       | DETECCIÓN DE ACCESO           | ACCESO A ESTACIÓN                      |                  | NC           | Cambio          | Cambio                | C/3600s              | C/3600s |  |
|                                         | PULSOS PLUVIOMETRO            | N/A                                    |                  | NA           | Cambio          |                       | C/3600s              | 3600s   |  |
|                                         | PULSOS Q yyy                  | N/A                                    |                  | NA           | Cambio          |                       | C/3600s              | 3600s   |  |
|                                         | DB BY-PASS GENERAL            | ALIVIANDO BY-PASS GENERAL              |                  | NC           | Cambio          | Cambio                | C/3600s              | C/3600s |  |
|                                         | DB BY-PASS PRETRATAMIENTO     | ALIVIANDO BY-PASS PRETRATAMIENTO       |                  | NC           | Cambio          | Cambio                | C/3600s              | C/3600s |  |
|                                         | DB BY-PASS xxx                | ALIVIANDO BY-PASS xxx                  |                  | NC           | Cambio          | Cambio                | C/3600s              | C/3600s |  |
|                                         | FALLO UV                      | FALLO DESINFECCIÓN UV                  |                  | NC           | Cambio          | Cambio                | C/3600s              | C/3600s |  |
|                                         | MARCHA UV                     | N/A                                    |                  | NA           | Cambio          |                       | C/3600s              | 3600s   |  |
|                                         | LLUVIA x10m                   | LLUVIA FUERTE PL                       | l/m²             |              |                 |                       | 600s                 |         |  |
| CAS                                     | LLUVIA MAX x1m                | N/A                                    | I/m²             |              |                 |                       | 600s                 |         |  |
| Ă                                       | LLUVIA X1h                    | N/A                                    | I/m²             |              |                 |                       | 3600s                | 2000-   |  |
| EM,                                     | QM INCORPORA x1h              | Opcional                               | m³               |              |                 |                       | 3600s                | 3600s   |  |
| MATEMATICAS                             | VOL INCORPORA x1h             | Opcional                               | m <sup>3</sup>   |              |                 |                       | 3600s                |         |  |
| 2                                       | QM AGUA TRATADA x1h           | Opcional                               | m <sup>3</sup>   |              |                 |                       | 3600s                |         |  |
|                                         |                               | e una estación secundaria conectada al |                  | auino do     | talamatrí       | 0.00.060              |                      | ~-      |  |

<sup>\*</sup> Cuando las señales procedan de una estación secundaria conectada al mismo equipo de telemetría se añadirán a sus señales


<sup>&#</sup>x27;#' + "Número de Estación '

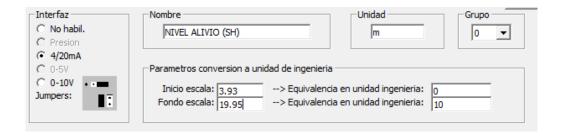
### Anexo III: Ejemplos de configuración y calibración


## A1. Calibración sonda analógica en equipos de telemetría MICROCOM:

#### Ejemplo de calibración sencillo:

Configuramos el equipo de telemetría MICROCOM para un inicio y fin de escala de 0-100. Repetimos el proceso para el inicio y fin de unidad de ingeniería (0-100)




Nos conectamos al tiempo real del equipo y llevamos la sonda a su posición de inicio (4 mA). Anotamos el valor de la lectura para este canal en el avisador.



Repetimos el proceso llevando la sonda a su valor máximo de escala o el más cercano. Si no es el máximo de escala anotamos el valor al que debería corresponder en unidades de ingeniería en ese punto.

Con los valores obtenidos, configuramos el inicio y fin de escala con el valor leído en tiempo real para el punto de inicio y fin de medición correspondientemente. Las unidades de ingeniería las configuraremos como "0" y el valor máximo en unidad de ingeniera de medición de la sonda o el utilizado para la última medida, respectivamente.

### ESPECIFICACIÓN TÉCNICA PARA LA INTEGRACIÓN DE EQUIPOS Y SEÑALES EN LA PLATAFORMA DE CONTROL DE LA EXPLOTACIÓN (SCADA-CE)



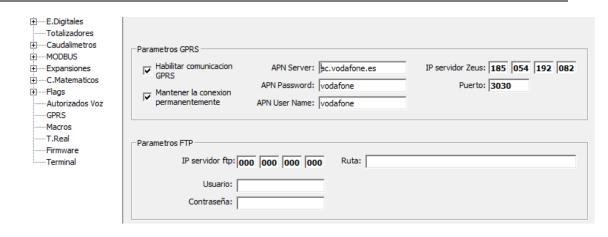
Una vez calibrada la señal analógica procederemos a calibrar el punto de cota de alivio si procede.

#### A2. Calibración Pluviómetros

A continuación se resume el proceso de calibración de un pluviómetro típico (Marca YOUNG)

- Comprobar que el pluviómetro esté bien nivelado. Limpiar si es necesario el filtro y cubeta.
- Verter lentamente agua en el embudo. Es importante que la velocidad de vertido no supere los 10 ml por minuto.
- Para ajustar la calibración tenemos dos tornillos de calibración tal como se ve en la figura adjunta. Los dos tornillos deben aflojarse o apretarse siempre por igual. Si el recuento es bajo levantamos los tornillos. En caso contrario los bajamos hasta conseguir el conteo correcto.
- Se recomienda realizar una primera calibración con 2 ml. Estos deben provocar un vuelco de la cubeta con la última gota. El proceso debe ajustarse para las dos direcciones
- Con la calibración correcta se obtiene 5 pulsos (vuelcos de la cubeta) por cada 10 ml. Por ejemplo, 100 ml deben dar un conteo 50 ± 1.




El pluviómetro se comporta como un interruptor. Para evitar falsas lecturas se recomienda su conexión al equipo contador de pulsos en un contacto libre de potencial

# A3. Configuración de los parámetros GPRS para conexión permanente

Cada operador de red tiene una configuración de conexión diferente. En el manual de configuración de los equipos MICROCOM encontramos los datos de configuración para los operadores habituales en España.

Incluimos ejemplo de configuración con el operador VODAFONE:

### ESPECIFICACIÓN TÉCNICA PARA LA INTEGRACIÓN DE EQUIPOS Y SEÑALES EN LA PLATAFORMA DE CONTROL DE LA EXPLOTACIÓN (SCADA-CE)

